Description: Bound-variable hypothesis builder for total orders. (Contributed by Stefan O'Rear, 20-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nfpo.r | |- F/_ x R | |
| nfpo.a | |- F/_ x A | ||
| Assertion | nfso | |- F/ x R Or A | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfpo.r | |- F/_ x R | |
| 2 | nfpo.a | |- F/_ x A | |
| 3 | df-so | |- ( R Or A <-> ( R Po A /\ A. a e. A A. b e. A ( a R b \/ a = b \/ b R a ) ) ) | |
| 4 | 1 2 | nfpo | |- F/ x R Po A | 
| 5 | nfcv | |- F/_ x a | |
| 6 | nfcv | |- F/_ x b | |
| 7 | 5 1 6 | nfbr | |- F/ x a R b | 
| 8 | nfv | |- F/ x a = b | |
| 9 | 6 1 5 | nfbr | |- F/ x b R a | 
| 10 | 7 8 9 | nf3or | |- F/ x ( a R b \/ a = b \/ b R a ) | 
| 11 | 2 10 | nfralw | |- F/ x A. b e. A ( a R b \/ a = b \/ b R a ) | 
| 12 | 2 11 | nfralw | |- F/ x A. a e. A A. b e. A ( a R b \/ a = b \/ b R a ) | 
| 13 | 4 12 | nfan | |- F/ x ( R Po A /\ A. a e. A A. b e. A ( a R b \/ a = b \/ b R a ) ) | 
| 14 | 3 13 | nfxfr | |- F/ x R Or A |