Metamath Proof Explorer


Theorem nfso

Description: Bound-variable hypothesis builder for total orders. (Contributed by Stefan O'Rear, 20-Jan-2015)

Ref Expression
Hypotheses nfpo.r
|- F/_ x R
nfpo.a
|- F/_ x A
Assertion nfso
|- F/ x R Or A

Proof

Step Hyp Ref Expression
1 nfpo.r
 |-  F/_ x R
2 nfpo.a
 |-  F/_ x A
3 df-so
 |-  ( R Or A <-> ( R Po A /\ A. a e. A A. b e. A ( a R b \/ a = b \/ b R a ) ) )
4 1 2 nfpo
 |-  F/ x R Po A
5 nfcv
 |-  F/_ x a
6 nfcv
 |-  F/_ x b
7 5 1 6 nfbr
 |-  F/ x a R b
8 nfv
 |-  F/ x a = b
9 6 1 5 nfbr
 |-  F/ x b R a
10 7 8 9 nf3or
 |-  F/ x ( a R b \/ a = b \/ b R a )
11 2 10 nfralw
 |-  F/ x A. b e. A ( a R b \/ a = b \/ b R a )
12 2 11 nfralw
 |-  F/ x A. a e. A A. b e. A ( a R b \/ a = b \/ b R a )
13 4 12 nfan
 |-  F/ x ( R Po A /\ A. a e. A A. b e. A ( a R b \/ a = b \/ b R a ) )
14 3 13 nfxfr
 |-  F/ x R Or A