Description: If x is not free in A and B , it is not free in A C_ B . (Contributed by NM, 27-Dec-1996)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dfss2f.1 | |- F/_ x A |
|
dfss2f.2 | |- F/_ x B |
||
Assertion | nfss | |- F/ x A C_ B |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2f.1 | |- F/_ x A |
|
2 | dfss2f.2 | |- F/_ x B |
|
3 | 1 2 | dfss3f | |- ( A C_ B <-> A. x e. A x e. B ) |
4 | nfra1 | |- F/ x A. x e. A x e. B |
|
5 | 3 4 | nfxfr | |- F/ x A C_ B |