Description: If x is not free in A and B , it is not free in A C_ B . (Contributed by NM, 27-Dec-1996)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dfssf.1 | |- F/_ x A |
|
| dfssf.2 | |- F/_ x B |
||
| Assertion | nfss | |- F/ x A C_ B |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfssf.1 | |- F/_ x A |
|
| 2 | dfssf.2 | |- F/_ x B |
|
| 3 | 1 2 | dfss3f | |- ( A C_ B <-> A. x e. A x e. B ) |
| 4 | nfra1 | |- F/ x A. x e. A x e. B |
|
| 5 | 3 4 | nfxfr | |- F/ x A C_ B |