Metamath Proof Explorer


Theorem nfsuc

Description: Bound-variable hypothesis builder for successor. (Contributed by NM, 15-Sep-2003)

Ref Expression
Hypothesis nfsuc.1
|- F/_ x A
Assertion nfsuc
|- F/_ x suc A

Proof

Step Hyp Ref Expression
1 nfsuc.1
 |-  F/_ x A
2 df-suc
 |-  suc A = ( A u. { A } )
3 1 nfsn
 |-  F/_ x { A }
4 1 3 nfun
 |-  F/_ x ( A u. { A } )
5 2 4 nfcxfr
 |-  F/_ x suc A