| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nfsum1.1 |  |-  F/_ k A | 
						
							| 2 |  | df-sum |  |-  sum_ k e. A B = ( iota x ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) ) ) | 
						
							| 3 |  | nfcv |  |-  F/_ k ZZ | 
						
							| 4 |  | nfcv |  |-  F/_ k ( ZZ>= ` m ) | 
						
							| 5 | 1 4 | nfss |  |-  F/ k A C_ ( ZZ>= ` m ) | 
						
							| 6 |  | nfcv |  |-  F/_ k m | 
						
							| 7 |  | nfcv |  |-  F/_ k + | 
						
							| 8 | 1 | nfcri |  |-  F/ k n e. A | 
						
							| 9 |  | nfcsb1v |  |-  F/_ k [_ n / k ]_ B | 
						
							| 10 |  | nfcv |  |-  F/_ k 0 | 
						
							| 11 | 8 9 10 | nfif |  |-  F/_ k if ( n e. A , [_ n / k ]_ B , 0 ) | 
						
							| 12 | 3 11 | nfmpt |  |-  F/_ k ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) | 
						
							| 13 | 6 7 12 | nfseq |  |-  F/_ k seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) | 
						
							| 14 |  | nfcv |  |-  F/_ k ~~> | 
						
							| 15 |  | nfcv |  |-  F/_ k x | 
						
							| 16 | 13 14 15 | nfbr |  |-  F/ k seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x | 
						
							| 17 | 5 16 | nfan |  |-  F/ k ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) | 
						
							| 18 | 3 17 | nfrexw |  |-  F/ k E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) | 
						
							| 19 |  | nfcv |  |-  F/_ k NN | 
						
							| 20 |  | nfcv |  |-  F/_ k f | 
						
							| 21 |  | nfcv |  |-  F/_ k ( 1 ... m ) | 
						
							| 22 | 20 21 1 | nff1o |  |-  F/ k f : ( 1 ... m ) -1-1-onto-> A | 
						
							| 23 |  | nfcv |  |-  F/_ k 1 | 
						
							| 24 |  | nfcsb1v |  |-  F/_ k [_ ( f ` n ) / k ]_ B | 
						
							| 25 | 19 24 | nfmpt |  |-  F/_ k ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) | 
						
							| 26 | 23 7 25 | nfseq |  |-  F/_ k seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) | 
						
							| 27 | 26 6 | nffv |  |-  F/_ k ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) | 
						
							| 28 | 27 | nfeq2 |  |-  F/ k x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) | 
						
							| 29 | 22 28 | nfan |  |-  F/ k ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) | 
						
							| 30 | 29 | nfex |  |-  F/ k E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) | 
						
							| 31 | 19 30 | nfrexw |  |-  F/ k E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) | 
						
							| 32 | 18 31 | nfor |  |-  F/ k ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) ) | 
						
							| 33 | 32 | nfiotaw |  |-  F/_ k ( iota x ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) ) ) | 
						
							| 34 | 2 33 | nfcxfr |  |-  F/_ k sum_ k e. A B |