Step |
Hyp |
Ref |
Expression |
1 |
|
nfsum1.1 |
|- F/_ k A |
2 |
|
df-sum |
|- sum_ k e. A B = ( iota x ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) ) ) |
3 |
|
nfcv |
|- F/_ k ZZ |
4 |
|
nfcv |
|- F/_ k ( ZZ>= ` m ) |
5 |
1 4
|
nfss |
|- F/ k A C_ ( ZZ>= ` m ) |
6 |
|
nfcv |
|- F/_ k m |
7 |
|
nfcv |
|- F/_ k + |
8 |
1
|
nfcri |
|- F/ k n e. A |
9 |
|
nfcsb1v |
|- F/_ k [_ n / k ]_ B |
10 |
|
nfcv |
|- F/_ k 0 |
11 |
8 9 10
|
nfif |
|- F/_ k if ( n e. A , [_ n / k ]_ B , 0 ) |
12 |
3 11
|
nfmpt |
|- F/_ k ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) |
13 |
6 7 12
|
nfseq |
|- F/_ k seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) |
14 |
|
nfcv |
|- F/_ k ~~> |
15 |
|
nfcv |
|- F/_ k x |
16 |
13 14 15
|
nfbr |
|- F/ k seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x |
17 |
5 16
|
nfan |
|- F/ k ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) |
18 |
3 17
|
nfrex |
|- F/ k E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) |
19 |
|
nfcv |
|- F/_ k NN |
20 |
|
nfcv |
|- F/_ k f |
21 |
|
nfcv |
|- F/_ k ( 1 ... m ) |
22 |
20 21 1
|
nff1o |
|- F/ k f : ( 1 ... m ) -1-1-onto-> A |
23 |
|
nfcv |
|- F/_ k 1 |
24 |
|
nfcsb1v |
|- F/_ k [_ ( f ` n ) / k ]_ B |
25 |
19 24
|
nfmpt |
|- F/_ k ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) |
26 |
23 7 25
|
nfseq |
|- F/_ k seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) |
27 |
26 6
|
nffv |
|- F/_ k ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) |
28 |
27
|
nfeq2 |
|- F/ k x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) |
29 |
22 28
|
nfan |
|- F/ k ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) |
30 |
29
|
nfex |
|- F/ k E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) |
31 |
19 30
|
nfrex |
|- F/ k E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) |
32 |
18 31
|
nfor |
|- F/ k ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) ) |
33 |
32
|
nfiotaw |
|- F/_ k ( iota x ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) ) ) |
34 |
2 33
|
nfcxfr |
|- F/_ k sum_ k e. A B |