| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nfsup.1 |
|- F/_ x A |
| 2 |
|
nfsup.2 |
|- F/_ x B |
| 3 |
|
nfsup.3 |
|- F/_ x R |
| 4 |
|
dfsup2 |
|- sup ( A , B , R ) = U. ( B \ ( ( `' R " A ) u. ( R " ( B \ ( `' R " A ) ) ) ) ) |
| 5 |
3
|
nfcnv |
|- F/_ x `' R |
| 6 |
5 1
|
nfima |
|- F/_ x ( `' R " A ) |
| 7 |
2 6
|
nfdif |
|- F/_ x ( B \ ( `' R " A ) ) |
| 8 |
3 7
|
nfima |
|- F/_ x ( R " ( B \ ( `' R " A ) ) ) |
| 9 |
6 8
|
nfun |
|- F/_ x ( ( `' R " A ) u. ( R " ( B \ ( `' R " A ) ) ) ) |
| 10 |
2 9
|
nfdif |
|- F/_ x ( B \ ( ( `' R " A ) u. ( R " ( B \ ( `' R " A ) ) ) ) ) |
| 11 |
10
|
nfuni |
|- F/_ x U. ( B \ ( ( `' R " A ) u. ( R " ( B \ ( `' R " A ) ) ) ) ) |
| 12 |
4 11
|
nfcxfr |
|- F/_ x sup ( A , B , R ) |