Metamath Proof Explorer


Theorem nfsymdif

Description: Hypothesis builder for symmetric difference. (Contributed by Scott Fenton, 19-Feb-2013) (Revised by Mario Carneiro, 11-Dec-2016)

Ref Expression
Hypotheses nfsymdif.1
|- F/_ x A
nfsymdif.2
|- F/_ x B
Assertion nfsymdif
|- F/_ x ( A /_\ B )

Proof

Step Hyp Ref Expression
1 nfsymdif.1
 |-  F/_ x A
2 nfsymdif.2
 |-  F/_ x B
3 df-symdif
 |-  ( A /_\ B ) = ( ( A \ B ) u. ( B \ A ) )
4 1 2 nfdif
 |-  F/_ x ( A \ B )
5 2 1 nfdif
 |-  F/_ x ( B \ A )
6 4 5 nfun
 |-  F/_ x ( ( A \ B ) u. ( B \ A ) )
7 3 6 nfcxfr
 |-  F/_ x ( A /_\ B )