Description: Hypothesis builder for symmetric difference. (Contributed by Scott Fenton, 19-Feb-2013) (Revised by Mario Carneiro, 11-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nfsymdif.1 | |- F/_ x A |
|
| nfsymdif.2 | |- F/_ x B |
||
| Assertion | nfsymdif | |- F/_ x ( A /_\ B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfsymdif.1 | |- F/_ x A |
|
| 2 | nfsymdif.2 | |- F/_ x B |
|
| 3 | df-symdif | |- ( A /_\ B ) = ( ( A \ B ) u. ( B \ A ) ) |
|
| 4 | 1 2 | nfdif | |- F/_ x ( A \ B ) |
| 5 | 2 1 | nfdif | |- F/_ x ( B \ A ) |
| 6 | 4 5 | nfun | |- F/_ x ( ( A \ B ) u. ( B \ A ) ) |
| 7 | 3 6 | nfcxfr | |- F/_ x ( A /_\ B ) |