Description: Hypothesis builder for symmetric difference. (Contributed by Scott Fenton, 19-Feb-2013) (Revised by Mario Carneiro, 11-Dec-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | nfsymdif.1 | |- F/_ x A |
|
nfsymdif.2 | |- F/_ x B |
||
Assertion | nfsymdif | |- F/_ x ( A /_\ B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfsymdif.1 | |- F/_ x A |
|
2 | nfsymdif.2 | |- F/_ x B |
|
3 | df-symdif | |- ( A /_\ B ) = ( ( A \ B ) u. ( B \ A ) ) |
|
4 | 1 2 | nfdif | |- F/_ x ( A \ B ) |
5 | 2 1 | nfdif | |- F/_ x ( B \ A ) |
6 | 4 5 | nfun | |- F/_ x ( ( A \ B ) u. ( B \ A ) ) |
7 | 3 6 | nfcxfr | |- F/_ x ( A /_\ B ) |