Metamath Proof Explorer


Theorem nftpos

Description: Hypothesis builder for transposition. (Contributed by Mario Carneiro, 10-Sep-2015)

Ref Expression
Hypothesis nftpos.1
|- F/_ x F
Assertion nftpos
|- F/_ x tpos F

Proof

Step Hyp Ref Expression
1 nftpos.1
 |-  F/_ x F
2 dftpos4
 |-  tpos F = ( F o. ( y e. ( ( _V X. _V ) u. { (/) } ) |-> U. `' { y } ) )
3 nfcv
 |-  F/_ x ( y e. ( ( _V X. _V ) u. { (/) } ) |-> U. `' { y } )
4 1 3 nfco
 |-  F/_ x ( F o. ( y e. ( ( _V X. _V ) u. { (/) } ) |-> U. `' { y } ) )
5 2 4 nfcxfr
 |-  F/_ x tpos F