Metamath Proof Explorer


Theorem nfun

Description: Bound-variable hypothesis builder for the union of classes. (Contributed by NM, 15-Sep-2003) (Revised by Mario Carneiro, 14-Oct-2016)

Ref Expression
Hypotheses nfun.1
|- F/_ x A
nfun.2
|- F/_ x B
Assertion nfun
|- F/_ x ( A u. B )

Proof

Step Hyp Ref Expression
1 nfun.1
 |-  F/_ x A
2 nfun.2
 |-  F/_ x B
3 df-un
 |-  ( A u. B ) = { y | ( y e. A \/ y e. B ) }
4 1 nfcri
 |-  F/ x y e. A
5 2 nfcri
 |-  F/ x y e. B
6 4 5 nfor
 |-  F/ x ( y e. A \/ y e. B )
7 6 nfab
 |-  F/_ x { y | ( y e. A \/ y e. B ) }
8 3 7 nfcxfr
 |-  F/_ x ( A u. B )