Metamath Proof Explorer


Theorem nfunid

Description: Deduction version of nfuni . (Contributed by NM, 18-Feb-2013)

Ref Expression
Hypothesis nfunid.3
|- ( ph -> F/_ x A )
Assertion nfunid
|- ( ph -> F/_ x U. A )

Proof

Step Hyp Ref Expression
1 nfunid.3
 |-  ( ph -> F/_ x A )
2 dfuni2
 |-  U. A = { y | E. z e. A y e. z }
3 nfv
 |-  F/ y ph
4 nfv
 |-  F/ z ph
5 nfvd
 |-  ( ph -> F/ x y e. z )
6 4 1 5 nfrexd
 |-  ( ph -> F/ x E. z e. A y e. z )
7 3 6 nfabdw
 |-  ( ph -> F/_ x { y | E. z e. A y e. z } )
8 2 7 nfcxfrd
 |-  ( ph -> F/_ x U. A )