| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eumo |
|- ( E! y A F y -> E* y A F y ) |
| 2 |
|
vex |
|- y e. _V |
| 3 |
2
|
brresi |
|- ( x ( F |` { A } ) y <-> ( x e. { A } /\ x F y ) ) |
| 4 |
|
velsn |
|- ( x e. { A } <-> x = A ) |
| 5 |
|
breq1 |
|- ( x = A -> ( x F y <-> A F y ) ) |
| 6 |
4 5
|
sylbi |
|- ( x e. { A } -> ( x F y <-> A F y ) ) |
| 7 |
6
|
biimpa |
|- ( ( x e. { A } /\ x F y ) -> A F y ) |
| 8 |
3 7
|
sylbi |
|- ( x ( F |` { A } ) y -> A F y ) |
| 9 |
8
|
moimi |
|- ( E* y A F y -> E* y x ( F |` { A } ) y ) |
| 10 |
1 9
|
syl |
|- ( E! y A F y -> E* y x ( F |` { A } ) y ) |
| 11 |
|
tz6.12-2 |
|- ( -. E! y A F y -> ( F ` A ) = (/) ) |
| 12 |
10 11
|
nsyl4 |
|- ( -. ( F ` A ) = (/) -> E* y x ( F |` { A } ) y ) |
| 13 |
12
|
alrimiv |
|- ( -. ( F ` A ) = (/) -> A. x E* y x ( F |` { A } ) y ) |
| 14 |
|
relres |
|- Rel ( F |` { A } ) |
| 15 |
13 14
|
jctil |
|- ( -. ( F ` A ) = (/) -> ( Rel ( F |` { A } ) /\ A. x E* y x ( F |` { A } ) y ) ) |
| 16 |
|
dffun6 |
|- ( Fun ( F |` { A } ) <-> ( Rel ( F |` { A } ) /\ A. x E* y x ( F |` { A } ) y ) ) |
| 17 |
15 16
|
sylibr |
|- ( -. ( F ` A ) = (/) -> Fun ( F |` { A } ) ) |
| 18 |
17
|
con1i |
|- ( -. Fun ( F |` { A } ) -> ( F ` A ) = (/) ) |