Metamath Proof Explorer


Theorem nfvres

Description: The value of a non-member of a restriction is the empty set. (An artifact of our function value definition.) (Contributed by NM, 13-Nov-1995)

Ref Expression
Assertion nfvres
|- ( -. A e. B -> ( ( F |` B ) ` A ) = (/) )

Proof

Step Hyp Ref Expression
1 dmres
 |-  dom ( F |` B ) = ( B i^i dom F )
2 inss1
 |-  ( B i^i dom F ) C_ B
3 1 2 eqsstri
 |-  dom ( F |` B ) C_ B
4 3 sseli
 |-  ( A e. dom ( F |` B ) -> A e. B )
5 ndmfv
 |-  ( -. A e. dom ( F |` B ) -> ( ( F |` B ) ` A ) = (/) )
6 4 5 nsyl5
 |-  ( -. A e. B -> ( ( F |` B ) ` A ) = (/) )