Metamath Proof Explorer


Theorem nfxp

Description: Bound-variable hypothesis builder for Cartesian product. (Contributed by NM, 15-Sep-2003) (Revised by Mario Carneiro, 15-Oct-2016)

Ref Expression
Hypotheses nfxp.1
|- F/_ x A
nfxp.2
|- F/_ x B
Assertion nfxp
|- F/_ x ( A X. B )

Proof

Step Hyp Ref Expression
1 nfxp.1
 |-  F/_ x A
2 nfxp.2
 |-  F/_ x B
3 df-xp
 |-  ( A X. B ) = { <. y , z >. | ( y e. A /\ z e. B ) }
4 1 nfcri
 |-  F/ x y e. A
5 2 nfcri
 |-  F/ x z e. B
6 4 5 nfan
 |-  F/ x ( y e. A /\ z e. B )
7 6 nfopab
 |-  F/_ x { <. y , z >. | ( y e. A /\ z e. B ) }
8 3 7 nfcxfr
 |-  F/_ x ( A X. B )