Metamath Proof Explorer


Theorem nghmcl

Description: A normed group homomorphism has a real operator norm. (Contributed by Mario Carneiro, 18-Oct-2015)

Ref Expression
Hypothesis nmofval.1
|- N = ( S normOp T )
Assertion nghmcl
|- ( F e. ( S NGHom T ) -> ( N ` F ) e. RR )

Proof

Step Hyp Ref Expression
1 nmofval.1
 |-  N = ( S normOp T )
2 1 isnghm
 |-  ( F e. ( S NGHom T ) <-> ( ( S e. NrmGrp /\ T e. NrmGrp ) /\ ( F e. ( S GrpHom T ) /\ ( N ` F ) e. RR ) ) )
3 2 simprbi
 |-  ( F e. ( S NGHom T ) -> ( F e. ( S GrpHom T ) /\ ( N ` F ) e. RR ) )
4 3 simprd
 |-  ( F e. ( S NGHom T ) -> ( N ` F ) e. RR )