Step |
Hyp |
Ref |
Expression |
1 |
|
nghmrcl1 |
|- ( G e. ( S NGHom T ) -> S e. NrmGrp ) |
2 |
1
|
adantl |
|- ( ( F e. ( T NGHom U ) /\ G e. ( S NGHom T ) ) -> S e. NrmGrp ) |
3 |
|
nghmrcl2 |
|- ( F e. ( T NGHom U ) -> U e. NrmGrp ) |
4 |
3
|
adantr |
|- ( ( F e. ( T NGHom U ) /\ G e. ( S NGHom T ) ) -> U e. NrmGrp ) |
5 |
|
nghmghm |
|- ( F e. ( T NGHom U ) -> F e. ( T GrpHom U ) ) |
6 |
|
nghmghm |
|- ( G e. ( S NGHom T ) -> G e. ( S GrpHom T ) ) |
7 |
|
ghmco |
|- ( ( F e. ( T GrpHom U ) /\ G e. ( S GrpHom T ) ) -> ( F o. G ) e. ( S GrpHom U ) ) |
8 |
5 6 7
|
syl2an |
|- ( ( F e. ( T NGHom U ) /\ G e. ( S NGHom T ) ) -> ( F o. G ) e. ( S GrpHom U ) ) |
9 |
|
eqid |
|- ( T normOp U ) = ( T normOp U ) |
10 |
9
|
nghmcl |
|- ( F e. ( T NGHom U ) -> ( ( T normOp U ) ` F ) e. RR ) |
11 |
|
eqid |
|- ( S normOp T ) = ( S normOp T ) |
12 |
11
|
nghmcl |
|- ( G e. ( S NGHom T ) -> ( ( S normOp T ) ` G ) e. RR ) |
13 |
|
remulcl |
|- ( ( ( ( T normOp U ) ` F ) e. RR /\ ( ( S normOp T ) ` G ) e. RR ) -> ( ( ( T normOp U ) ` F ) x. ( ( S normOp T ) ` G ) ) e. RR ) |
14 |
10 12 13
|
syl2an |
|- ( ( F e. ( T NGHom U ) /\ G e. ( S NGHom T ) ) -> ( ( ( T normOp U ) ` F ) x. ( ( S normOp T ) ` G ) ) e. RR ) |
15 |
|
eqid |
|- ( S normOp U ) = ( S normOp U ) |
16 |
15 9 11
|
nmoco |
|- ( ( F e. ( T NGHom U ) /\ G e. ( S NGHom T ) ) -> ( ( S normOp U ) ` ( F o. G ) ) <_ ( ( ( T normOp U ) ` F ) x. ( ( S normOp T ) ` G ) ) ) |
17 |
15
|
bddnghm |
|- ( ( ( S e. NrmGrp /\ U e. NrmGrp /\ ( F o. G ) e. ( S GrpHom U ) ) /\ ( ( ( ( T normOp U ) ` F ) x. ( ( S normOp T ) ` G ) ) e. RR /\ ( ( S normOp U ) ` ( F o. G ) ) <_ ( ( ( T normOp U ) ` F ) x. ( ( S normOp T ) ` G ) ) ) ) -> ( F o. G ) e. ( S NGHom U ) ) |
18 |
2 4 8 14 16 17
|
syl32anc |
|- ( ( F e. ( T NGHom U ) /\ G e. ( S NGHom T ) ) -> ( F o. G ) e. ( S NGHom U ) ) |