| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nmofval.1 |  |-  N = ( S normOp T ) | 
						
							| 2 |  | oveq12 |  |-  ( ( s = S /\ t = T ) -> ( s normOp t ) = ( S normOp T ) ) | 
						
							| 3 | 2 1 | eqtr4di |  |-  ( ( s = S /\ t = T ) -> ( s normOp t ) = N ) | 
						
							| 4 | 3 | cnveqd |  |-  ( ( s = S /\ t = T ) -> `' ( s normOp t ) = `' N ) | 
						
							| 5 | 4 | imaeq1d |  |-  ( ( s = S /\ t = T ) -> ( `' ( s normOp t ) " RR ) = ( `' N " RR ) ) | 
						
							| 6 |  | df-nghm |  |-  NGHom = ( s e. NrmGrp , t e. NrmGrp |-> ( `' ( s normOp t ) " RR ) ) | 
						
							| 7 | 1 | ovexi |  |-  N e. _V | 
						
							| 8 | 7 | cnvex |  |-  `' N e. _V | 
						
							| 9 | 8 | imaex |  |-  ( `' N " RR ) e. _V | 
						
							| 10 | 5 6 9 | ovmpoa |  |-  ( ( S e. NrmGrp /\ T e. NrmGrp ) -> ( S NGHom T ) = ( `' N " RR ) ) | 
						
							| 11 | 6 | mpondm0 |  |-  ( -. ( S e. NrmGrp /\ T e. NrmGrp ) -> ( S NGHom T ) = (/) ) | 
						
							| 12 |  | nmoffn |  |-  normOp Fn ( NrmGrp X. NrmGrp ) | 
						
							| 13 | 12 | fndmi |  |-  dom normOp = ( NrmGrp X. NrmGrp ) | 
						
							| 14 | 13 | ndmov |  |-  ( -. ( S e. NrmGrp /\ T e. NrmGrp ) -> ( S normOp T ) = (/) ) | 
						
							| 15 | 1 14 | eqtrid |  |-  ( -. ( S e. NrmGrp /\ T e. NrmGrp ) -> N = (/) ) | 
						
							| 16 | 15 | cnveqd |  |-  ( -. ( S e. NrmGrp /\ T e. NrmGrp ) -> `' N = `' (/) ) | 
						
							| 17 |  | cnv0 |  |-  `' (/) = (/) | 
						
							| 18 | 16 17 | eqtrdi |  |-  ( -. ( S e. NrmGrp /\ T e. NrmGrp ) -> `' N = (/) ) | 
						
							| 19 | 18 | imaeq1d |  |-  ( -. ( S e. NrmGrp /\ T e. NrmGrp ) -> ( `' N " RR ) = ( (/) " RR ) ) | 
						
							| 20 |  | 0ima |  |-  ( (/) " RR ) = (/) | 
						
							| 21 | 19 20 | eqtrdi |  |-  ( -. ( S e. NrmGrp /\ T e. NrmGrp ) -> ( `' N " RR ) = (/) ) | 
						
							| 22 | 11 21 | eqtr4d |  |-  ( -. ( S e. NrmGrp /\ T e. NrmGrp ) -> ( S NGHom T ) = ( `' N " RR ) ) | 
						
							| 23 | 10 22 | pm2.61i |  |-  ( S NGHom T ) = ( `' N " RR ) |