Step |
Hyp |
Ref |
Expression |
1 |
|
nghmplusg.p |
|- .+ = ( +g ` T ) |
2 |
|
nghmrcl1 |
|- ( F e. ( S NGHom T ) -> S e. NrmGrp ) |
3 |
2
|
3ad2ant2 |
|- ( ( T e. Abel /\ F e. ( S NGHom T ) /\ G e. ( S NGHom T ) ) -> S e. NrmGrp ) |
4 |
|
nghmrcl2 |
|- ( F e. ( S NGHom T ) -> T e. NrmGrp ) |
5 |
4
|
3ad2ant2 |
|- ( ( T e. Abel /\ F e. ( S NGHom T ) /\ G e. ( S NGHom T ) ) -> T e. NrmGrp ) |
6 |
|
id |
|- ( T e. Abel -> T e. Abel ) |
7 |
|
nghmghm |
|- ( F e. ( S NGHom T ) -> F e. ( S GrpHom T ) ) |
8 |
|
nghmghm |
|- ( G e. ( S NGHom T ) -> G e. ( S GrpHom T ) ) |
9 |
1
|
ghmplusg |
|- ( ( T e. Abel /\ F e. ( S GrpHom T ) /\ G e. ( S GrpHom T ) ) -> ( F oF .+ G ) e. ( S GrpHom T ) ) |
10 |
6 7 8 9
|
syl3an |
|- ( ( T e. Abel /\ F e. ( S NGHom T ) /\ G e. ( S NGHom T ) ) -> ( F oF .+ G ) e. ( S GrpHom T ) ) |
11 |
|
eqid |
|- ( S normOp T ) = ( S normOp T ) |
12 |
11
|
nghmcl |
|- ( F e. ( S NGHom T ) -> ( ( S normOp T ) ` F ) e. RR ) |
13 |
12
|
3ad2ant2 |
|- ( ( T e. Abel /\ F e. ( S NGHom T ) /\ G e. ( S NGHom T ) ) -> ( ( S normOp T ) ` F ) e. RR ) |
14 |
11
|
nghmcl |
|- ( G e. ( S NGHom T ) -> ( ( S normOp T ) ` G ) e. RR ) |
15 |
14
|
3ad2ant3 |
|- ( ( T e. Abel /\ F e. ( S NGHom T ) /\ G e. ( S NGHom T ) ) -> ( ( S normOp T ) ` G ) e. RR ) |
16 |
13 15
|
readdcld |
|- ( ( T e. Abel /\ F e. ( S NGHom T ) /\ G e. ( S NGHom T ) ) -> ( ( ( S normOp T ) ` F ) + ( ( S normOp T ) ` G ) ) e. RR ) |
17 |
11 1
|
nmotri |
|- ( ( T e. Abel /\ F e. ( S NGHom T ) /\ G e. ( S NGHom T ) ) -> ( ( S normOp T ) ` ( F oF .+ G ) ) <_ ( ( ( S normOp T ) ` F ) + ( ( S normOp T ) ` G ) ) ) |
18 |
11
|
bddnghm |
|- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ ( F oF .+ G ) e. ( S GrpHom T ) ) /\ ( ( ( ( S normOp T ) ` F ) + ( ( S normOp T ) ` G ) ) e. RR /\ ( ( S normOp T ) ` ( F oF .+ G ) ) <_ ( ( ( S normOp T ) ` F ) + ( ( S normOp T ) ` G ) ) ) ) -> ( F oF .+ G ) e. ( S NGHom T ) ) |
19 |
3 5 10 16 17 18
|
syl32anc |
|- ( ( T e. Abel /\ F e. ( S NGHom T ) /\ G e. ( S NGHom T ) ) -> ( F oF .+ G ) e. ( S NGHom T ) ) |