Metamath Proof Explorer


Theorem ngnmcncn

Description: The norm of a normed group is a continuous function to CC . (Contributed by NM, 12-Aug-2007) (Revised by AV, 17-Oct-2021)

Ref Expression
Hypotheses nmcn.n
|- N = ( norm ` G )
nmcn.j
|- J = ( TopOpen ` G )
ngnmcncn.k
|- K = ( TopOpen ` CCfld )
Assertion ngnmcncn
|- ( G e. NrmGrp -> N e. ( J Cn K ) )

Proof

Step Hyp Ref Expression
1 nmcn.n
 |-  N = ( norm ` G )
2 nmcn.j
 |-  J = ( TopOpen ` G )
3 ngnmcncn.k
 |-  K = ( TopOpen ` CCfld )
4 3 cnfldtop
 |-  K e. Top
5 cnrest2r
 |-  ( K e. Top -> ( J Cn ( K |`t RR ) ) C_ ( J Cn K ) )
6 4 5 ax-mp
 |-  ( J Cn ( K |`t RR ) ) C_ ( J Cn K )
7 3 tgioo2
 |-  ( topGen ` ran (,) ) = ( K |`t RR )
8 7 eqcomi
 |-  ( K |`t RR ) = ( topGen ` ran (,) )
9 1 2 8 nmcn
 |-  ( G e. NrmGrp -> N e. ( J Cn ( K |`t RR ) ) )
10 6 9 sselid
 |-  ( G e. NrmGrp -> N e. ( J Cn K ) )