Description: The norm of a normed group is a continuous function to CC . (Contributed by NM, 12-Aug-2007) (Revised by AV, 17-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmcn.n | |- N = ( norm ` G ) | |
| nmcn.j | |- J = ( TopOpen ` G ) | ||
| ngnmcncn.k | |- K = ( TopOpen ` CCfld ) | ||
| Assertion | ngnmcncn | |- ( G e. NrmGrp -> N e. ( J Cn K ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nmcn.n | |- N = ( norm ` G ) | |
| 2 | nmcn.j | |- J = ( TopOpen ` G ) | |
| 3 | ngnmcncn.k | |- K = ( TopOpen ` CCfld ) | |
| 4 | 3 | cnfldtop | |- K e. Top | 
| 5 | cnrest2r | |- ( K e. Top -> ( J Cn ( K |`t RR ) ) C_ ( J Cn K ) ) | |
| 6 | 4 5 | ax-mp | |- ( J Cn ( K |`t RR ) ) C_ ( J Cn K ) | 
| 7 | 3 | tgioo2 | |- ( topGen ` ran (,) ) = ( K |`t RR ) | 
| 8 | 7 | eqcomi | |- ( K |`t RR ) = ( topGen ` ran (,) ) | 
| 9 | 1 2 8 | nmcn | |- ( G e. NrmGrp -> N e. ( J Cn ( K |`t RR ) ) ) | 
| 10 | 6 9 | sselid | |- ( G e. NrmGrp -> N e. ( J Cn K ) ) |