Description: The norm of a normed group is a continuous function to CC . (Contributed by NM, 12-Aug-2007) (Revised by AV, 17-Oct-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | nmcn.n | |- N = ( norm ` G ) |
|
nmcn.j | |- J = ( TopOpen ` G ) |
||
ngnmcncn.k | |- K = ( TopOpen ` CCfld ) |
||
Assertion | ngnmcncn | |- ( G e. NrmGrp -> N e. ( J Cn K ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmcn.n | |- N = ( norm ` G ) |
|
2 | nmcn.j | |- J = ( TopOpen ` G ) |
|
3 | ngnmcncn.k | |- K = ( TopOpen ` CCfld ) |
|
4 | 3 | cnfldtop | |- K e. Top |
5 | cnrest2r | |- ( K e. Top -> ( J Cn ( K |`t RR ) ) C_ ( J Cn K ) ) |
|
6 | 4 5 | ax-mp | |- ( J Cn ( K |`t RR ) ) C_ ( J Cn K ) |
7 | 3 | tgioo2 | |- ( topGen ` ran (,) ) = ( K |`t RR ) |
8 | 7 | eqcomi | |- ( K |`t RR ) = ( topGen ` ran (,) ) |
9 | 1 2 8 | nmcn | |- ( G e. NrmGrp -> N e. ( J Cn ( K |`t RR ) ) ) |
10 | 6 9 | sselid | |- ( G e. NrmGrp -> N e. ( J Cn K ) ) |