Step |
Hyp |
Ref |
Expression |
1 |
|
ngpds.n |
|- N = ( norm ` G ) |
2 |
|
ngpds.x |
|- X = ( Base ` G ) |
3 |
|
ngpds.m |
|- .- = ( -g ` G ) |
4 |
|
ngpds.d |
|- D = ( dist ` G ) |
5 |
|
eqid |
|- ( D |` ( X X. X ) ) = ( D |` ( X X. X ) ) |
6 |
1 3 4 2 5
|
isngp2 |
|- ( G e. NrmGrp <-> ( G e. Grp /\ G e. MetSp /\ ( N o. .- ) = ( D |` ( X X. X ) ) ) ) |
7 |
6
|
simp3bi |
|- ( G e. NrmGrp -> ( N o. .- ) = ( D |` ( X X. X ) ) ) |
8 |
7
|
3ad2ant1 |
|- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( N o. .- ) = ( D |` ( X X. X ) ) ) |
9 |
8
|
oveqd |
|- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( A ( N o. .- ) B ) = ( A ( D |` ( X X. X ) ) B ) ) |
10 |
|
ngpgrp |
|- ( G e. NrmGrp -> G e. Grp ) |
11 |
2 3
|
grpsubf |
|- ( G e. Grp -> .- : ( X X. X ) --> X ) |
12 |
10 11
|
syl |
|- ( G e. NrmGrp -> .- : ( X X. X ) --> X ) |
13 |
12
|
3ad2ant1 |
|- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> .- : ( X X. X ) --> X ) |
14 |
|
opelxpi |
|- ( ( A e. X /\ B e. X ) -> <. A , B >. e. ( X X. X ) ) |
15 |
14
|
3adant1 |
|- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> <. A , B >. e. ( X X. X ) ) |
16 |
|
fvco3 |
|- ( ( .- : ( X X. X ) --> X /\ <. A , B >. e. ( X X. X ) ) -> ( ( N o. .- ) ` <. A , B >. ) = ( N ` ( .- ` <. A , B >. ) ) ) |
17 |
13 15 16
|
syl2anc |
|- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( ( N o. .- ) ` <. A , B >. ) = ( N ` ( .- ` <. A , B >. ) ) ) |
18 |
|
df-ov |
|- ( A ( N o. .- ) B ) = ( ( N o. .- ) ` <. A , B >. ) |
19 |
|
df-ov |
|- ( A .- B ) = ( .- ` <. A , B >. ) |
20 |
19
|
fveq2i |
|- ( N ` ( A .- B ) ) = ( N ` ( .- ` <. A , B >. ) ) |
21 |
17 18 20
|
3eqtr4g |
|- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( A ( N o. .- ) B ) = ( N ` ( A .- B ) ) ) |
22 |
|
ovres |
|- ( ( A e. X /\ B e. X ) -> ( A ( D |` ( X X. X ) ) B ) = ( A D B ) ) |
23 |
22
|
3adant1 |
|- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( A ( D |` ( X X. X ) ) B ) = ( A D B ) ) |
24 |
9 21 23
|
3eqtr3rd |
|- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( A D B ) = ( N ` ( A .- B ) ) ) |