| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ngpds2.x |
|- X = ( Base ` G ) |
| 2 |
|
ngpds2.z |
|- .0. = ( 0g ` G ) |
| 3 |
|
ngpds2.m |
|- .- = ( -g ` G ) |
| 4 |
|
ngpds2.d |
|- D = ( dist ` G ) |
| 5 |
|
eqid |
|- ( norm ` G ) = ( norm ` G ) |
| 6 |
5 1 3 4
|
ngpds |
|- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( A D B ) = ( ( norm ` G ) ` ( A .- B ) ) ) |
| 7 |
|
ngpgrp |
|- ( G e. NrmGrp -> G e. Grp ) |
| 8 |
1 3
|
grpsubcl |
|- ( ( G e. Grp /\ A e. X /\ B e. X ) -> ( A .- B ) e. X ) |
| 9 |
7 8
|
syl3an1 |
|- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( A .- B ) e. X ) |
| 10 |
5 1 2 4
|
nmval |
|- ( ( A .- B ) e. X -> ( ( norm ` G ) ` ( A .- B ) ) = ( ( A .- B ) D .0. ) ) |
| 11 |
9 10
|
syl |
|- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( ( norm ` G ) ` ( A .- B ) ) = ( ( A .- B ) D .0. ) ) |
| 12 |
6 11
|
eqtrd |
|- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( A D B ) = ( ( A .- B ) D .0. ) ) |