| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ngpds2.x |  |-  X = ( Base ` G ) | 
						
							| 2 |  | ngpds2.z |  |-  .0. = ( 0g ` G ) | 
						
							| 3 |  | ngpds2.m |  |-  .- = ( -g ` G ) | 
						
							| 4 |  | ngpds2.d |  |-  D = ( dist ` G ) | 
						
							| 5 | 1 2 3 4 | ngpds2 |  |-  ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( A D B ) = ( ( A .- B ) D .0. ) ) | 
						
							| 6 |  | ngpxms |  |-  ( G e. NrmGrp -> G e. *MetSp ) | 
						
							| 7 | 6 | 3ad2ant1 |  |-  ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> G e. *MetSp ) | 
						
							| 8 |  | ngpgrp |  |-  ( G e. NrmGrp -> G e. Grp ) | 
						
							| 9 | 1 3 | grpsubcl |  |-  ( ( G e. Grp /\ A e. X /\ B e. X ) -> ( A .- B ) e. X ) | 
						
							| 10 | 8 9 | syl3an1 |  |-  ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( A .- B ) e. X ) | 
						
							| 11 | 8 | 3ad2ant1 |  |-  ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> G e. Grp ) | 
						
							| 12 | 1 2 | grpidcl |  |-  ( G e. Grp -> .0. e. X ) | 
						
							| 13 | 11 12 | syl |  |-  ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> .0. e. X ) | 
						
							| 14 | 1 4 | xmssym |  |-  ( ( G e. *MetSp /\ ( A .- B ) e. X /\ .0. e. X ) -> ( ( A .- B ) D .0. ) = ( .0. D ( A .- B ) ) ) | 
						
							| 15 | 7 10 13 14 | syl3anc |  |-  ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( ( A .- B ) D .0. ) = ( .0. D ( A .- B ) ) ) | 
						
							| 16 | 5 15 | eqtrd |  |-  ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( A D B ) = ( .0. D ( A .- B ) ) ) |