Step |
Hyp |
Ref |
Expression |
1 |
|
ngpds2.x |
|- X = ( Base ` G ) |
2 |
|
ngpds2.z |
|- .0. = ( 0g ` G ) |
3 |
|
ngpds2.m |
|- .- = ( -g ` G ) |
4 |
|
ngpds2.d |
|- D = ( dist ` G ) |
5 |
1 2 3 4
|
ngpds2 |
|- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( A D B ) = ( ( A .- B ) D .0. ) ) |
6 |
|
ngpxms |
|- ( G e. NrmGrp -> G e. *MetSp ) |
7 |
6
|
3ad2ant1 |
|- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> G e. *MetSp ) |
8 |
|
ngpgrp |
|- ( G e. NrmGrp -> G e. Grp ) |
9 |
1 3
|
grpsubcl |
|- ( ( G e. Grp /\ A e. X /\ B e. X ) -> ( A .- B ) e. X ) |
10 |
8 9
|
syl3an1 |
|- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( A .- B ) e. X ) |
11 |
8
|
3ad2ant1 |
|- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> G e. Grp ) |
12 |
1 2
|
grpidcl |
|- ( G e. Grp -> .0. e. X ) |
13 |
11 12
|
syl |
|- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> .0. e. X ) |
14 |
1 4
|
xmssym |
|- ( ( G e. *MetSp /\ ( A .- B ) e. X /\ .0. e. X ) -> ( ( A .- B ) D .0. ) = ( .0. D ( A .- B ) ) ) |
15 |
7 10 13 14
|
syl3anc |
|- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( ( A .- B ) D .0. ) = ( .0. D ( A .- B ) ) ) |
16 |
5 15
|
eqtrd |
|- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( A D B ) = ( .0. D ( A .- B ) ) ) |