| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ngpds2.x |  |-  X = ( Base ` G ) | 
						
							| 2 |  | ngpds2.z |  |-  .0. = ( 0g ` G ) | 
						
							| 3 |  | ngpds2.m |  |-  .- = ( -g ` G ) | 
						
							| 4 |  | ngpds2.d |  |-  D = ( dist ` G ) | 
						
							| 5 |  | ngpxms |  |-  ( G e. NrmGrp -> G e. *MetSp ) | 
						
							| 6 | 1 4 | xmssym |  |-  ( ( G e. *MetSp /\ A e. X /\ B e. X ) -> ( A D B ) = ( B D A ) ) | 
						
							| 7 | 5 6 | syl3an1 |  |-  ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( A D B ) = ( B D A ) ) | 
						
							| 8 | 1 2 3 4 | ngpds3 |  |-  ( ( G e. NrmGrp /\ B e. X /\ A e. X ) -> ( B D A ) = ( .0. D ( B .- A ) ) ) | 
						
							| 9 | 8 | 3com23 |  |-  ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( B D A ) = ( .0. D ( B .- A ) ) ) | 
						
							| 10 | 7 9 | eqtrd |  |-  ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( A D B ) = ( .0. D ( B .- A ) ) ) |