Metamath Proof Explorer


Theorem ngpmet

Description: The (induced) metric of a normed group is a metric. Part of Definition 2.2-1 of Kreyszig p. 58. (Contributed by NM, 4-Dec-2006) (Revised by AV, 14-Oct-2021)

Ref Expression
Hypotheses ngpmet.x
|- X = ( Base ` G )
ngpmet.d
|- D = ( ( dist ` G ) |` ( X X. X ) )
Assertion ngpmet
|- ( G e. NrmGrp -> D e. ( Met ` X ) )

Proof

Step Hyp Ref Expression
1 ngpmet.x
 |-  X = ( Base ` G )
2 ngpmet.d
 |-  D = ( ( dist ` G ) |` ( X X. X ) )
3 ngpms
 |-  ( G e. NrmGrp -> G e. MetSp )
4 1 2 msmet
 |-  ( G e. MetSp -> D e. ( Met ` X ) )
5 3 4 syl
 |-  ( G e. NrmGrp -> D e. ( Met ` X ) )