| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ngppropd.1 |
|- ( ph -> B = ( Base ` K ) ) |
| 2 |
|
ngppropd.2 |
|- ( ph -> B = ( Base ` L ) ) |
| 3 |
|
ngppropd.3 |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) ) |
| 4 |
|
ngppropd.4 |
|- ( ph -> ( ( dist ` K ) |` ( B X. B ) ) = ( ( dist ` L ) |` ( B X. B ) ) ) |
| 5 |
|
ngppropd.5 |
|- ( ph -> ( TopOpen ` K ) = ( TopOpen ` L ) ) |
| 6 |
1 2 4 5
|
mspropd |
|- ( ph -> ( K e. MetSp <-> L e. MetSp ) ) |
| 7 |
6
|
adantr |
|- ( ( ph /\ K e. Grp ) -> ( K e. MetSp <-> L e. MetSp ) ) |
| 8 |
1
|
adantr |
|- ( ( ph /\ K e. Grp ) -> B = ( Base ` K ) ) |
| 9 |
2
|
adantr |
|- ( ( ph /\ K e. Grp ) -> B = ( Base ` L ) ) |
| 10 |
|
simpr |
|- ( ( ph /\ K e. Grp ) -> K e. Grp ) |
| 11 |
3
|
adantlr |
|- ( ( ( ph /\ K e. Grp ) /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) ) |
| 12 |
4
|
adantr |
|- ( ( ph /\ K e. Grp ) -> ( ( dist ` K ) |` ( B X. B ) ) = ( ( dist ` L ) |` ( B X. B ) ) ) |
| 13 |
8 9 10 11 12
|
nmpropd2 |
|- ( ( ph /\ K e. Grp ) -> ( norm ` K ) = ( norm ` L ) ) |
| 14 |
8 9 10 11
|
grpsubpropd2 |
|- ( ( ph /\ K e. Grp ) -> ( -g ` K ) = ( -g ` L ) ) |
| 15 |
13 14
|
coeq12d |
|- ( ( ph /\ K e. Grp ) -> ( ( norm ` K ) o. ( -g ` K ) ) = ( ( norm ` L ) o. ( -g ` L ) ) ) |
| 16 |
1
|
sqxpeqd |
|- ( ph -> ( B X. B ) = ( ( Base ` K ) X. ( Base ` K ) ) ) |
| 17 |
16
|
reseq2d |
|- ( ph -> ( ( dist ` K ) |` ( B X. B ) ) = ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) ) |
| 18 |
2
|
sqxpeqd |
|- ( ph -> ( B X. B ) = ( ( Base ` L ) X. ( Base ` L ) ) ) |
| 19 |
18
|
reseq2d |
|- ( ph -> ( ( dist ` L ) |` ( B X. B ) ) = ( ( dist ` L ) |` ( ( Base ` L ) X. ( Base ` L ) ) ) ) |
| 20 |
4 17 19
|
3eqtr3d |
|- ( ph -> ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) = ( ( dist ` L ) |` ( ( Base ` L ) X. ( Base ` L ) ) ) ) |
| 21 |
20
|
adantr |
|- ( ( ph /\ K e. Grp ) -> ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) = ( ( dist ` L ) |` ( ( Base ` L ) X. ( Base ` L ) ) ) ) |
| 22 |
15 21
|
eqeq12d |
|- ( ( ph /\ K e. Grp ) -> ( ( ( norm ` K ) o. ( -g ` K ) ) = ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) <-> ( ( norm ` L ) o. ( -g ` L ) ) = ( ( dist ` L ) |` ( ( Base ` L ) X. ( Base ` L ) ) ) ) ) |
| 23 |
7 22
|
anbi12d |
|- ( ( ph /\ K e. Grp ) -> ( ( K e. MetSp /\ ( ( norm ` K ) o. ( -g ` K ) ) = ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) ) <-> ( L e. MetSp /\ ( ( norm ` L ) o. ( -g ` L ) ) = ( ( dist ` L ) |` ( ( Base ` L ) X. ( Base ` L ) ) ) ) ) ) |
| 24 |
23
|
pm5.32da |
|- ( ph -> ( ( K e. Grp /\ ( K e. MetSp /\ ( ( norm ` K ) o. ( -g ` K ) ) = ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) ) ) <-> ( K e. Grp /\ ( L e. MetSp /\ ( ( norm ` L ) o. ( -g ` L ) ) = ( ( dist ` L ) |` ( ( Base ` L ) X. ( Base ` L ) ) ) ) ) ) ) |
| 25 |
1 2 3
|
grppropd |
|- ( ph -> ( K e. Grp <-> L e. Grp ) ) |
| 26 |
25
|
anbi1d |
|- ( ph -> ( ( K e. Grp /\ ( L e. MetSp /\ ( ( norm ` L ) o. ( -g ` L ) ) = ( ( dist ` L ) |` ( ( Base ` L ) X. ( Base ` L ) ) ) ) ) <-> ( L e. Grp /\ ( L e. MetSp /\ ( ( norm ` L ) o. ( -g ` L ) ) = ( ( dist ` L ) |` ( ( Base ` L ) X. ( Base ` L ) ) ) ) ) ) ) |
| 27 |
24 26
|
bitrd |
|- ( ph -> ( ( K e. Grp /\ ( K e. MetSp /\ ( ( norm ` K ) o. ( -g ` K ) ) = ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) ) ) <-> ( L e. Grp /\ ( L e. MetSp /\ ( ( norm ` L ) o. ( -g ` L ) ) = ( ( dist ` L ) |` ( ( Base ` L ) X. ( Base ` L ) ) ) ) ) ) ) |
| 28 |
|
3anass |
|- ( ( K e. Grp /\ K e. MetSp /\ ( ( norm ` K ) o. ( -g ` K ) ) = ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) ) <-> ( K e. Grp /\ ( K e. MetSp /\ ( ( norm ` K ) o. ( -g ` K ) ) = ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) ) ) ) |
| 29 |
|
3anass |
|- ( ( L e. Grp /\ L e. MetSp /\ ( ( norm ` L ) o. ( -g ` L ) ) = ( ( dist ` L ) |` ( ( Base ` L ) X. ( Base ` L ) ) ) ) <-> ( L e. Grp /\ ( L e. MetSp /\ ( ( norm ` L ) o. ( -g ` L ) ) = ( ( dist ` L ) |` ( ( Base ` L ) X. ( Base ` L ) ) ) ) ) ) |
| 30 |
27 28 29
|
3bitr4g |
|- ( ph -> ( ( K e. Grp /\ K e. MetSp /\ ( ( norm ` K ) o. ( -g ` K ) ) = ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) ) <-> ( L e. Grp /\ L e. MetSp /\ ( ( norm ` L ) o. ( -g ` L ) ) = ( ( dist ` L ) |` ( ( Base ` L ) X. ( Base ` L ) ) ) ) ) ) |
| 31 |
|
eqid |
|- ( norm ` K ) = ( norm ` K ) |
| 32 |
|
eqid |
|- ( -g ` K ) = ( -g ` K ) |
| 33 |
|
eqid |
|- ( dist ` K ) = ( dist ` K ) |
| 34 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 35 |
|
eqid |
|- ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) = ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) |
| 36 |
31 32 33 34 35
|
isngp2 |
|- ( K e. NrmGrp <-> ( K e. Grp /\ K e. MetSp /\ ( ( norm ` K ) o. ( -g ` K ) ) = ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) ) ) |
| 37 |
|
eqid |
|- ( norm ` L ) = ( norm ` L ) |
| 38 |
|
eqid |
|- ( -g ` L ) = ( -g ` L ) |
| 39 |
|
eqid |
|- ( dist ` L ) = ( dist ` L ) |
| 40 |
|
eqid |
|- ( Base ` L ) = ( Base ` L ) |
| 41 |
|
eqid |
|- ( ( dist ` L ) |` ( ( Base ` L ) X. ( Base ` L ) ) ) = ( ( dist ` L ) |` ( ( Base ` L ) X. ( Base ` L ) ) ) |
| 42 |
37 38 39 40 41
|
isngp2 |
|- ( L e. NrmGrp <-> ( L e. Grp /\ L e. MetSp /\ ( ( norm ` L ) o. ( -g ` L ) ) = ( ( dist ` L ) |` ( ( Base ` L ) X. ( Base ` L ) ) ) ) ) |
| 43 |
30 36 42
|
3bitr4g |
|- ( ph -> ( K e. NrmGrp <-> L e. NrmGrp ) ) |