| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ngpsubcan.x |  |-  X = ( Base ` G ) | 
						
							| 2 |  | ngpsubcan.m |  |-  .- = ( -g ` G ) | 
						
							| 3 |  | ngpsubcan.d |  |-  D = ( dist ` G ) | 
						
							| 4 |  | simpr1 |  |-  ( ( G e. NrmGrp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> A e. X ) | 
						
							| 5 |  | simpr3 |  |-  ( ( G e. NrmGrp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> C e. X ) | 
						
							| 6 |  | eqid |  |-  ( +g ` G ) = ( +g ` G ) | 
						
							| 7 |  | eqid |  |-  ( invg ` G ) = ( invg ` G ) | 
						
							| 8 | 1 6 7 2 | grpsubval |  |-  ( ( A e. X /\ C e. X ) -> ( A .- C ) = ( A ( +g ` G ) ( ( invg ` G ) ` C ) ) ) | 
						
							| 9 | 4 5 8 | syl2anc |  |-  ( ( G e. NrmGrp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A .- C ) = ( A ( +g ` G ) ( ( invg ` G ) ` C ) ) ) | 
						
							| 10 |  | simpr2 |  |-  ( ( G e. NrmGrp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> B e. X ) | 
						
							| 11 | 1 6 7 2 | grpsubval |  |-  ( ( B e. X /\ C e. X ) -> ( B .- C ) = ( B ( +g ` G ) ( ( invg ` G ) ` C ) ) ) | 
						
							| 12 | 10 5 11 | syl2anc |  |-  ( ( G e. NrmGrp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( B .- C ) = ( B ( +g ` G ) ( ( invg ` G ) ` C ) ) ) | 
						
							| 13 | 9 12 | oveq12d |  |-  ( ( G e. NrmGrp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A .- C ) D ( B .- C ) ) = ( ( A ( +g ` G ) ( ( invg ` G ) ` C ) ) D ( B ( +g ` G ) ( ( invg ` G ) ` C ) ) ) ) | 
						
							| 14 |  | simpl |  |-  ( ( G e. NrmGrp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> G e. NrmGrp ) | 
						
							| 15 |  | ngpgrp |  |-  ( G e. NrmGrp -> G e. Grp ) | 
						
							| 16 | 1 7 | grpinvcl |  |-  ( ( G e. Grp /\ C e. X ) -> ( ( invg ` G ) ` C ) e. X ) | 
						
							| 17 | 15 5 16 | syl2an2r |  |-  ( ( G e. NrmGrp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( invg ` G ) ` C ) e. X ) | 
						
							| 18 | 1 6 3 | ngprcan |  |-  ( ( G e. NrmGrp /\ ( A e. X /\ B e. X /\ ( ( invg ` G ) ` C ) e. X ) ) -> ( ( A ( +g ` G ) ( ( invg ` G ) ` C ) ) D ( B ( +g ` G ) ( ( invg ` G ) ` C ) ) ) = ( A D B ) ) | 
						
							| 19 | 14 4 10 17 18 | syl13anc |  |-  ( ( G e. NrmGrp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A ( +g ` G ) ( ( invg ` G ) ` C ) ) D ( B ( +g ` G ) ( ( invg ` G ) ` C ) ) ) = ( A D B ) ) | 
						
							| 20 | 13 19 | eqtrd |  |-  ( ( G e. NrmGrp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A .- C ) D ( B .- C ) ) = ( A D B ) ) |