Step |
Hyp |
Ref |
Expression |
1 |
|
mnfxr |
|- -oo e. RR* |
2 |
|
xrltnr |
|- ( -oo e. RR* -> -. -oo < -oo ) |
3 |
1 2
|
ax-mp |
|- -. -oo < -oo |
4 |
|
breq2 |
|- ( A = -oo -> ( -oo < A <-> -oo < -oo ) ) |
5 |
3 4
|
mtbiri |
|- ( A = -oo -> -. -oo < A ) |
6 |
|
mnfle |
|- ( A e. RR* -> -oo <_ A ) |
7 |
|
xrleloe |
|- ( ( -oo e. RR* /\ A e. RR* ) -> ( -oo <_ A <-> ( -oo < A \/ -oo = A ) ) ) |
8 |
1 7
|
mpan |
|- ( A e. RR* -> ( -oo <_ A <-> ( -oo < A \/ -oo = A ) ) ) |
9 |
6 8
|
mpbid |
|- ( A e. RR* -> ( -oo < A \/ -oo = A ) ) |
10 |
9
|
ord |
|- ( A e. RR* -> ( -. -oo < A -> -oo = A ) ) |
11 |
|
eqcom |
|- ( -oo = A <-> A = -oo ) |
12 |
10 11
|
syl6ib |
|- ( A e. RR* -> ( -. -oo < A -> A = -oo ) ) |
13 |
5 12
|
impbid2 |
|- ( A e. RR* -> ( A = -oo <-> -. -oo < A ) ) |