| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nlelch.1 |
|- T e. LinFn |
| 2 |
|
nlelch.2 |
|- T e. ContFn |
| 3 |
1
|
nlelshi |
|- ( null ` T ) e. SH |
| 4 |
|
vex |
|- x e. _V |
| 5 |
4
|
hlimveci |
|- ( f ~~>v x -> x e. ~H ) |
| 6 |
5
|
adantl |
|- ( ( f : NN --> ( null ` T ) /\ f ~~>v x ) -> x e. ~H ) |
| 7 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 8 |
7
|
cnfldhaus |
|- ( TopOpen ` CCfld ) e. Haus |
| 9 |
8
|
a1i |
|- ( ( f : NN --> ( null ` T ) /\ f ~~>v x ) -> ( TopOpen ` CCfld ) e. Haus ) |
| 10 |
|
eqid |
|- <. <. +h , .h >. , normh >. = <. <. +h , .h >. , normh >. |
| 11 |
|
eqid |
|- ( normh o. -h ) = ( normh o. -h ) |
| 12 |
10 11
|
hhims |
|- ( normh o. -h ) = ( IndMet ` <. <. +h , .h >. , normh >. ) |
| 13 |
|
eqid |
|- ( MetOpen ` ( normh o. -h ) ) = ( MetOpen ` ( normh o. -h ) ) |
| 14 |
10 12 13
|
hhlm |
|- ~~>v = ( ( ~~>t ` ( MetOpen ` ( normh o. -h ) ) ) |` ( ~H ^m NN ) ) |
| 15 |
|
resss |
|- ( ( ~~>t ` ( MetOpen ` ( normh o. -h ) ) ) |` ( ~H ^m NN ) ) C_ ( ~~>t ` ( MetOpen ` ( normh o. -h ) ) ) |
| 16 |
14 15
|
eqsstri |
|- ~~>v C_ ( ~~>t ` ( MetOpen ` ( normh o. -h ) ) ) |
| 17 |
16
|
ssbri |
|- ( f ~~>v x -> f ( ~~>t ` ( MetOpen ` ( normh o. -h ) ) ) x ) |
| 18 |
17
|
adantl |
|- ( ( f : NN --> ( null ` T ) /\ f ~~>v x ) -> f ( ~~>t ` ( MetOpen ` ( normh o. -h ) ) ) x ) |
| 19 |
11 13 7
|
hhcnf |
|- ContFn = ( ( MetOpen ` ( normh o. -h ) ) Cn ( TopOpen ` CCfld ) ) |
| 20 |
2 19
|
eleqtri |
|- T e. ( ( MetOpen ` ( normh o. -h ) ) Cn ( TopOpen ` CCfld ) ) |
| 21 |
20
|
a1i |
|- ( ( f : NN --> ( null ` T ) /\ f ~~>v x ) -> T e. ( ( MetOpen ` ( normh o. -h ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 22 |
18 21
|
lmcn |
|- ( ( f : NN --> ( null ` T ) /\ f ~~>v x ) -> ( T o. f ) ( ~~>t ` ( TopOpen ` CCfld ) ) ( T ` x ) ) |
| 23 |
1
|
lnfnfi |
|- T : ~H --> CC |
| 24 |
|
ffvelcdm |
|- ( ( f : NN --> ( null ` T ) /\ n e. NN ) -> ( f ` n ) e. ( null ` T ) ) |
| 25 |
24
|
adantlr |
|- ( ( ( f : NN --> ( null ` T ) /\ f ~~>v x ) /\ n e. NN ) -> ( f ` n ) e. ( null ` T ) ) |
| 26 |
|
elnlfn2 |
|- ( ( T : ~H --> CC /\ ( f ` n ) e. ( null ` T ) ) -> ( T ` ( f ` n ) ) = 0 ) |
| 27 |
23 25 26
|
sylancr |
|- ( ( ( f : NN --> ( null ` T ) /\ f ~~>v x ) /\ n e. NN ) -> ( T ` ( f ` n ) ) = 0 ) |
| 28 |
|
fvco3 |
|- ( ( f : NN --> ( null ` T ) /\ n e. NN ) -> ( ( T o. f ) ` n ) = ( T ` ( f ` n ) ) ) |
| 29 |
28
|
adantlr |
|- ( ( ( f : NN --> ( null ` T ) /\ f ~~>v x ) /\ n e. NN ) -> ( ( T o. f ) ` n ) = ( T ` ( f ` n ) ) ) |
| 30 |
|
c0ex |
|- 0 e. _V |
| 31 |
30
|
fvconst2 |
|- ( n e. NN -> ( ( NN X. { 0 } ) ` n ) = 0 ) |
| 32 |
31
|
adantl |
|- ( ( ( f : NN --> ( null ` T ) /\ f ~~>v x ) /\ n e. NN ) -> ( ( NN X. { 0 } ) ` n ) = 0 ) |
| 33 |
27 29 32
|
3eqtr4d |
|- ( ( ( f : NN --> ( null ` T ) /\ f ~~>v x ) /\ n e. NN ) -> ( ( T o. f ) ` n ) = ( ( NN X. { 0 } ) ` n ) ) |
| 34 |
33
|
ralrimiva |
|- ( ( f : NN --> ( null ` T ) /\ f ~~>v x ) -> A. n e. NN ( ( T o. f ) ` n ) = ( ( NN X. { 0 } ) ` n ) ) |
| 35 |
|
ffn |
|- ( T : ~H --> CC -> T Fn ~H ) |
| 36 |
23 35
|
ax-mp |
|- T Fn ~H |
| 37 |
|
simpl |
|- ( ( f : NN --> ( null ` T ) /\ f ~~>v x ) -> f : NN --> ( null ` T ) ) |
| 38 |
3
|
shssii |
|- ( null ` T ) C_ ~H |
| 39 |
|
fss |
|- ( ( f : NN --> ( null ` T ) /\ ( null ` T ) C_ ~H ) -> f : NN --> ~H ) |
| 40 |
37 38 39
|
sylancl |
|- ( ( f : NN --> ( null ` T ) /\ f ~~>v x ) -> f : NN --> ~H ) |
| 41 |
|
fnfco |
|- ( ( T Fn ~H /\ f : NN --> ~H ) -> ( T o. f ) Fn NN ) |
| 42 |
36 40 41
|
sylancr |
|- ( ( f : NN --> ( null ` T ) /\ f ~~>v x ) -> ( T o. f ) Fn NN ) |
| 43 |
30
|
fconst |
|- ( NN X. { 0 } ) : NN --> { 0 } |
| 44 |
|
ffn |
|- ( ( NN X. { 0 } ) : NN --> { 0 } -> ( NN X. { 0 } ) Fn NN ) |
| 45 |
43 44
|
ax-mp |
|- ( NN X. { 0 } ) Fn NN |
| 46 |
|
eqfnfv |
|- ( ( ( T o. f ) Fn NN /\ ( NN X. { 0 } ) Fn NN ) -> ( ( T o. f ) = ( NN X. { 0 } ) <-> A. n e. NN ( ( T o. f ) ` n ) = ( ( NN X. { 0 } ) ` n ) ) ) |
| 47 |
42 45 46
|
sylancl |
|- ( ( f : NN --> ( null ` T ) /\ f ~~>v x ) -> ( ( T o. f ) = ( NN X. { 0 } ) <-> A. n e. NN ( ( T o. f ) ` n ) = ( ( NN X. { 0 } ) ` n ) ) ) |
| 48 |
34 47
|
mpbird |
|- ( ( f : NN --> ( null ` T ) /\ f ~~>v x ) -> ( T o. f ) = ( NN X. { 0 } ) ) |
| 49 |
7
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 50 |
49
|
a1i |
|- ( ( f : NN --> ( null ` T ) /\ f ~~>v x ) -> ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) |
| 51 |
|
0cnd |
|- ( ( f : NN --> ( null ` T ) /\ f ~~>v x ) -> 0 e. CC ) |
| 52 |
|
1zzd |
|- ( ( f : NN --> ( null ` T ) /\ f ~~>v x ) -> 1 e. ZZ ) |
| 53 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 54 |
53
|
lmconst |
|- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ 0 e. CC /\ 1 e. ZZ ) -> ( NN X. { 0 } ) ( ~~>t ` ( TopOpen ` CCfld ) ) 0 ) |
| 55 |
50 51 52 54
|
syl3anc |
|- ( ( f : NN --> ( null ` T ) /\ f ~~>v x ) -> ( NN X. { 0 } ) ( ~~>t ` ( TopOpen ` CCfld ) ) 0 ) |
| 56 |
48 55
|
eqbrtrd |
|- ( ( f : NN --> ( null ` T ) /\ f ~~>v x ) -> ( T o. f ) ( ~~>t ` ( TopOpen ` CCfld ) ) 0 ) |
| 57 |
9 22 56
|
lmmo |
|- ( ( f : NN --> ( null ` T ) /\ f ~~>v x ) -> ( T ` x ) = 0 ) |
| 58 |
|
elnlfn |
|- ( T : ~H --> CC -> ( x e. ( null ` T ) <-> ( x e. ~H /\ ( T ` x ) = 0 ) ) ) |
| 59 |
23 58
|
ax-mp |
|- ( x e. ( null ` T ) <-> ( x e. ~H /\ ( T ` x ) = 0 ) ) |
| 60 |
6 57 59
|
sylanbrc |
|- ( ( f : NN --> ( null ` T ) /\ f ~~>v x ) -> x e. ( null ` T ) ) |
| 61 |
60
|
gen2 |
|- A. f A. x ( ( f : NN --> ( null ` T ) /\ f ~~>v x ) -> x e. ( null ` T ) ) |
| 62 |
|
isch2 |
|- ( ( null ` T ) e. CH <-> ( ( null ` T ) e. SH /\ A. f A. x ( ( f : NN --> ( null ` T ) /\ f ~~>v x ) -> x e. ( null ` T ) ) ) ) |
| 63 |
3 61 62
|
mpbir2an |
|- ( null ` T ) e. CH |