Step |
Hyp |
Ref |
Expression |
1 |
|
nlelch.1 |
|- T e. LinFn |
2 |
|
nlelch.2 |
|- T e. ContFn |
3 |
1
|
nlelshi |
|- ( null ` T ) e. SH |
4 |
|
vex |
|- x e. _V |
5 |
4
|
hlimveci |
|- ( f ~~>v x -> x e. ~H ) |
6 |
5
|
adantl |
|- ( ( f : NN --> ( null ` T ) /\ f ~~>v x ) -> x e. ~H ) |
7 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
8 |
7
|
cnfldhaus |
|- ( TopOpen ` CCfld ) e. Haus |
9 |
8
|
a1i |
|- ( ( f : NN --> ( null ` T ) /\ f ~~>v x ) -> ( TopOpen ` CCfld ) e. Haus ) |
10 |
|
eqid |
|- <. <. +h , .h >. , normh >. = <. <. +h , .h >. , normh >. |
11 |
|
eqid |
|- ( normh o. -h ) = ( normh o. -h ) |
12 |
10 11
|
hhims |
|- ( normh o. -h ) = ( IndMet ` <. <. +h , .h >. , normh >. ) |
13 |
|
eqid |
|- ( MetOpen ` ( normh o. -h ) ) = ( MetOpen ` ( normh o. -h ) ) |
14 |
10 12 13
|
hhlm |
|- ~~>v = ( ( ~~>t ` ( MetOpen ` ( normh o. -h ) ) ) |` ( ~H ^m NN ) ) |
15 |
|
resss |
|- ( ( ~~>t ` ( MetOpen ` ( normh o. -h ) ) ) |` ( ~H ^m NN ) ) C_ ( ~~>t ` ( MetOpen ` ( normh o. -h ) ) ) |
16 |
14 15
|
eqsstri |
|- ~~>v C_ ( ~~>t ` ( MetOpen ` ( normh o. -h ) ) ) |
17 |
16
|
ssbri |
|- ( f ~~>v x -> f ( ~~>t ` ( MetOpen ` ( normh o. -h ) ) ) x ) |
18 |
17
|
adantl |
|- ( ( f : NN --> ( null ` T ) /\ f ~~>v x ) -> f ( ~~>t ` ( MetOpen ` ( normh o. -h ) ) ) x ) |
19 |
11 13 7
|
hhcnf |
|- ContFn = ( ( MetOpen ` ( normh o. -h ) ) Cn ( TopOpen ` CCfld ) ) |
20 |
2 19
|
eleqtri |
|- T e. ( ( MetOpen ` ( normh o. -h ) ) Cn ( TopOpen ` CCfld ) ) |
21 |
20
|
a1i |
|- ( ( f : NN --> ( null ` T ) /\ f ~~>v x ) -> T e. ( ( MetOpen ` ( normh o. -h ) ) Cn ( TopOpen ` CCfld ) ) ) |
22 |
18 21
|
lmcn |
|- ( ( f : NN --> ( null ` T ) /\ f ~~>v x ) -> ( T o. f ) ( ~~>t ` ( TopOpen ` CCfld ) ) ( T ` x ) ) |
23 |
1
|
lnfnfi |
|- T : ~H --> CC |
24 |
|
ffvelrn |
|- ( ( f : NN --> ( null ` T ) /\ n e. NN ) -> ( f ` n ) e. ( null ` T ) ) |
25 |
24
|
adantlr |
|- ( ( ( f : NN --> ( null ` T ) /\ f ~~>v x ) /\ n e. NN ) -> ( f ` n ) e. ( null ` T ) ) |
26 |
|
elnlfn2 |
|- ( ( T : ~H --> CC /\ ( f ` n ) e. ( null ` T ) ) -> ( T ` ( f ` n ) ) = 0 ) |
27 |
23 25 26
|
sylancr |
|- ( ( ( f : NN --> ( null ` T ) /\ f ~~>v x ) /\ n e. NN ) -> ( T ` ( f ` n ) ) = 0 ) |
28 |
|
fvco3 |
|- ( ( f : NN --> ( null ` T ) /\ n e. NN ) -> ( ( T o. f ) ` n ) = ( T ` ( f ` n ) ) ) |
29 |
28
|
adantlr |
|- ( ( ( f : NN --> ( null ` T ) /\ f ~~>v x ) /\ n e. NN ) -> ( ( T o. f ) ` n ) = ( T ` ( f ` n ) ) ) |
30 |
|
c0ex |
|- 0 e. _V |
31 |
30
|
fvconst2 |
|- ( n e. NN -> ( ( NN X. { 0 } ) ` n ) = 0 ) |
32 |
31
|
adantl |
|- ( ( ( f : NN --> ( null ` T ) /\ f ~~>v x ) /\ n e. NN ) -> ( ( NN X. { 0 } ) ` n ) = 0 ) |
33 |
27 29 32
|
3eqtr4d |
|- ( ( ( f : NN --> ( null ` T ) /\ f ~~>v x ) /\ n e. NN ) -> ( ( T o. f ) ` n ) = ( ( NN X. { 0 } ) ` n ) ) |
34 |
33
|
ralrimiva |
|- ( ( f : NN --> ( null ` T ) /\ f ~~>v x ) -> A. n e. NN ( ( T o. f ) ` n ) = ( ( NN X. { 0 } ) ` n ) ) |
35 |
|
ffn |
|- ( T : ~H --> CC -> T Fn ~H ) |
36 |
23 35
|
ax-mp |
|- T Fn ~H |
37 |
|
simpl |
|- ( ( f : NN --> ( null ` T ) /\ f ~~>v x ) -> f : NN --> ( null ` T ) ) |
38 |
3
|
shssii |
|- ( null ` T ) C_ ~H |
39 |
|
fss |
|- ( ( f : NN --> ( null ` T ) /\ ( null ` T ) C_ ~H ) -> f : NN --> ~H ) |
40 |
37 38 39
|
sylancl |
|- ( ( f : NN --> ( null ` T ) /\ f ~~>v x ) -> f : NN --> ~H ) |
41 |
|
fnfco |
|- ( ( T Fn ~H /\ f : NN --> ~H ) -> ( T o. f ) Fn NN ) |
42 |
36 40 41
|
sylancr |
|- ( ( f : NN --> ( null ` T ) /\ f ~~>v x ) -> ( T o. f ) Fn NN ) |
43 |
30
|
fconst |
|- ( NN X. { 0 } ) : NN --> { 0 } |
44 |
|
ffn |
|- ( ( NN X. { 0 } ) : NN --> { 0 } -> ( NN X. { 0 } ) Fn NN ) |
45 |
43 44
|
ax-mp |
|- ( NN X. { 0 } ) Fn NN |
46 |
|
eqfnfv |
|- ( ( ( T o. f ) Fn NN /\ ( NN X. { 0 } ) Fn NN ) -> ( ( T o. f ) = ( NN X. { 0 } ) <-> A. n e. NN ( ( T o. f ) ` n ) = ( ( NN X. { 0 } ) ` n ) ) ) |
47 |
42 45 46
|
sylancl |
|- ( ( f : NN --> ( null ` T ) /\ f ~~>v x ) -> ( ( T o. f ) = ( NN X. { 0 } ) <-> A. n e. NN ( ( T o. f ) ` n ) = ( ( NN X. { 0 } ) ` n ) ) ) |
48 |
34 47
|
mpbird |
|- ( ( f : NN --> ( null ` T ) /\ f ~~>v x ) -> ( T o. f ) = ( NN X. { 0 } ) ) |
49 |
7
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
50 |
49
|
a1i |
|- ( ( f : NN --> ( null ` T ) /\ f ~~>v x ) -> ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) |
51 |
|
0cnd |
|- ( ( f : NN --> ( null ` T ) /\ f ~~>v x ) -> 0 e. CC ) |
52 |
|
1zzd |
|- ( ( f : NN --> ( null ` T ) /\ f ~~>v x ) -> 1 e. ZZ ) |
53 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
54 |
53
|
lmconst |
|- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ 0 e. CC /\ 1 e. ZZ ) -> ( NN X. { 0 } ) ( ~~>t ` ( TopOpen ` CCfld ) ) 0 ) |
55 |
50 51 52 54
|
syl3anc |
|- ( ( f : NN --> ( null ` T ) /\ f ~~>v x ) -> ( NN X. { 0 } ) ( ~~>t ` ( TopOpen ` CCfld ) ) 0 ) |
56 |
48 55
|
eqbrtrd |
|- ( ( f : NN --> ( null ` T ) /\ f ~~>v x ) -> ( T o. f ) ( ~~>t ` ( TopOpen ` CCfld ) ) 0 ) |
57 |
9 22 56
|
lmmo |
|- ( ( f : NN --> ( null ` T ) /\ f ~~>v x ) -> ( T ` x ) = 0 ) |
58 |
|
elnlfn |
|- ( T : ~H --> CC -> ( x e. ( null ` T ) <-> ( x e. ~H /\ ( T ` x ) = 0 ) ) ) |
59 |
23 58
|
ax-mp |
|- ( x e. ( null ` T ) <-> ( x e. ~H /\ ( T ` x ) = 0 ) ) |
60 |
6 57 59
|
sylanbrc |
|- ( ( f : NN --> ( null ` T ) /\ f ~~>v x ) -> x e. ( null ` T ) ) |
61 |
60
|
gen2 |
|- A. f A. x ( ( f : NN --> ( null ` T ) /\ f ~~>v x ) -> x e. ( null ` T ) ) |
62 |
|
isch2 |
|- ( ( null ` T ) e. CH <-> ( ( null ` T ) e. SH /\ A. f A. x ( ( f : NN --> ( null ` T ) /\ f ~~>v x ) -> x e. ( null ` T ) ) ) ) |
63 |
3 61 62
|
mpbir2an |
|- ( null ` T ) e. CH |