| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnex |  |-  CC e. _V | 
						
							| 2 |  | ax-hilex |  |-  ~H e. _V | 
						
							| 3 | 1 2 | elmap |  |-  ( T e. ( CC ^m ~H ) <-> T : ~H --> CC ) | 
						
							| 4 |  | cnvexg |  |-  ( T e. ( CC ^m ~H ) -> `' T e. _V ) | 
						
							| 5 |  | imaexg |  |-  ( `' T e. _V -> ( `' T " { 0 } ) e. _V ) | 
						
							| 6 | 4 5 | syl |  |-  ( T e. ( CC ^m ~H ) -> ( `' T " { 0 } ) e. _V ) | 
						
							| 7 |  | cnveq |  |-  ( t = T -> `' t = `' T ) | 
						
							| 8 | 7 | imaeq1d |  |-  ( t = T -> ( `' t " { 0 } ) = ( `' T " { 0 } ) ) | 
						
							| 9 |  | df-nlfn |  |-  null = ( t e. ( CC ^m ~H ) |-> ( `' t " { 0 } ) ) | 
						
							| 10 | 8 9 | fvmptg |  |-  ( ( T e. ( CC ^m ~H ) /\ ( `' T " { 0 } ) e. _V ) -> ( null ` T ) = ( `' T " { 0 } ) ) | 
						
							| 11 | 6 10 | mpdan |  |-  ( T e. ( CC ^m ~H ) -> ( null ` T ) = ( `' T " { 0 } ) ) | 
						
							| 12 | 3 11 | sylbir |  |-  ( T : ~H --> CC -> ( null ` T ) = ( `' T " { 0 } ) ) |