Step |
Hyp |
Ref |
Expression |
1 |
|
cnex |
|- CC e. _V |
2 |
|
ax-hilex |
|- ~H e. _V |
3 |
1 2
|
elmap |
|- ( T e. ( CC ^m ~H ) <-> T : ~H --> CC ) |
4 |
|
cnvexg |
|- ( T e. ( CC ^m ~H ) -> `' T e. _V ) |
5 |
|
imaexg |
|- ( `' T e. _V -> ( `' T " { 0 } ) e. _V ) |
6 |
4 5
|
syl |
|- ( T e. ( CC ^m ~H ) -> ( `' T " { 0 } ) e. _V ) |
7 |
|
cnveq |
|- ( t = T -> `' t = `' T ) |
8 |
7
|
imaeq1d |
|- ( t = T -> ( `' t " { 0 } ) = ( `' T " { 0 } ) ) |
9 |
|
df-nlfn |
|- null = ( t e. ( CC ^m ~H ) |-> ( `' t " { 0 } ) ) |
10 |
8 9
|
fvmptg |
|- ( ( T e. ( CC ^m ~H ) /\ ( `' T " { 0 } ) e. _V ) -> ( null ` T ) = ( `' T " { 0 } ) ) |
11 |
6 10
|
mpdan |
|- ( T e. ( CC ^m ~H ) -> ( null ` T ) = ( `' T " { 0 } ) ) |
12 |
3 11
|
sylbir |
|- ( T : ~H --> CC -> ( null ` T ) = ( `' T " { 0 } ) ) |