Metamath Proof Explorer


Theorem nlim2

Description: 2 is not a limit ordinal. (Contributed by BTernaryTau, 1-Dec-2024)

Ref Expression
Assertion nlim2
|- -. Lim 2o

Proof

Step Hyp Ref Expression
1 1oex
 |-  1o e. _V
2 1 prid2
 |-  1o e. { (/) , 1o }
3 df2o3
 |-  2o = { (/) , 1o }
4 2 3 eleqtrri
 |-  1o e. 2o
5 1on
 |-  1o e. On
6 5 onirri
 |-  -. 1o e. 1o
7 eleq2
 |-  ( 2o = 1o -> ( 1o e. 2o <-> 1o e. 1o ) )
8 6 7 mtbiri
 |-  ( 2o = 1o -> -. 1o e. 2o )
9 4 8 mt2
 |-  -. 2o = 1o
10 9 neir
 |-  2o =/= 1o
11 3 unieqi
 |-  U. 2o = U. { (/) , 1o }
12 0ex
 |-  (/) e. _V
13 12 1 unipr
 |-  U. { (/) , 1o } = ( (/) u. 1o )
14 0un
 |-  ( (/) u. 1o ) = 1o
15 11 13 14 3eqtri
 |-  U. 2o = 1o
16 10 15 neeqtrri
 |-  2o =/= U. 2o
17 16 neii
 |-  -. 2o = U. 2o
18 simp3
 |-  ( ( Ord 2o /\ 2o =/= (/) /\ 2o = U. 2o ) -> 2o = U. 2o )
19 17 18 mto
 |-  -. ( Ord 2o /\ 2o =/= (/) /\ 2o = U. 2o )
20 df-lim
 |-  ( Lim 2o <-> ( Ord 2o /\ 2o =/= (/) /\ 2o = U. 2o ) )
21 19 20 mtbir
 |-  -. Lim 2o