Step |
Hyp |
Ref |
Expression |
1 |
|
limord |
|- ( Lim suc A -> Ord suc A ) |
2 |
|
ordsuc |
|- ( Ord A <-> Ord suc A ) |
3 |
1 2
|
sylibr |
|- ( Lim suc A -> Ord A ) |
4 |
|
limuni |
|- ( Lim suc A -> suc A = U. suc A ) |
5 |
|
ordunisuc |
|- ( Ord A -> U. suc A = A ) |
6 |
5
|
eqeq2d |
|- ( Ord A -> ( suc A = U. suc A <-> suc A = A ) ) |
7 |
|
ordirr |
|- ( Ord A -> -. A e. A ) |
8 |
|
eleq2 |
|- ( suc A = A -> ( A e. suc A <-> A e. A ) ) |
9 |
8
|
notbid |
|- ( suc A = A -> ( -. A e. suc A <-> -. A e. A ) ) |
10 |
7 9
|
syl5ibrcom |
|- ( Ord A -> ( suc A = A -> -. A e. suc A ) ) |
11 |
|
sucidg |
|- ( A e. V -> A e. suc A ) |
12 |
11
|
con3i |
|- ( -. A e. suc A -> -. A e. V ) |
13 |
10 12
|
syl6 |
|- ( Ord A -> ( suc A = A -> -. A e. V ) ) |
14 |
6 13
|
sylbid |
|- ( Ord A -> ( suc A = U. suc A -> -. A e. V ) ) |
15 |
3 4 14
|
sylc |
|- ( Lim suc A -> -. A e. V ) |
16 |
15
|
con2i |
|- ( A e. V -> -. Lim suc A ) |