| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  |-  ( Base ` W ) = ( Base ` W ) | 
						
							| 2 |  | eqid |  |-  ( norm ` W ) = ( norm ` W ) | 
						
							| 3 |  | eqid |  |-  ( .s ` W ) = ( .s ` W ) | 
						
							| 4 |  | eqid |  |-  ( Scalar ` W ) = ( Scalar ` W ) | 
						
							| 5 |  | eqid |  |-  ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) | 
						
							| 6 |  | eqid |  |-  ( norm ` ( Scalar ` W ) ) = ( norm ` ( Scalar ` W ) ) | 
						
							| 7 | 1 2 3 4 5 6 | isnlm |  |-  ( W e. NrmMod <-> ( ( W e. NrmGrp /\ W e. LMod /\ ( Scalar ` W ) e. NrmRing ) /\ A. x e. ( Base ` ( Scalar ` W ) ) A. y e. ( Base ` W ) ( ( norm ` W ) ` ( x ( .s ` W ) y ) ) = ( ( ( norm ` ( Scalar ` W ) ) ` x ) x. ( ( norm ` W ) ` y ) ) ) ) | 
						
							| 8 | 7 | simplbi |  |-  ( W e. NrmMod -> ( W e. NrmGrp /\ W e. LMod /\ ( Scalar ` W ) e. NrmRing ) ) | 
						
							| 9 | 8 | simp2d |  |-  ( W e. NrmMod -> W e. LMod ) |