Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
2 |
|
eqid |
|- ( norm ` W ) = ( norm ` W ) |
3 |
|
eqid |
|- ( .s ` W ) = ( .s ` W ) |
4 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
5 |
|
eqid |
|- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
6 |
|
eqid |
|- ( norm ` ( Scalar ` W ) ) = ( norm ` ( Scalar ` W ) ) |
7 |
1 2 3 4 5 6
|
isnlm |
|- ( W e. NrmMod <-> ( ( W e. NrmGrp /\ W e. LMod /\ ( Scalar ` W ) e. NrmRing ) /\ A. x e. ( Base ` ( Scalar ` W ) ) A. y e. ( Base ` W ) ( ( norm ` W ) ` ( x ( .s ` W ) y ) ) = ( ( ( norm ` ( Scalar ` W ) ) ` x ) x. ( ( norm ` W ) ` y ) ) ) ) |
8 |
7
|
simplbi |
|- ( W e. NrmMod -> ( W e. NrmGrp /\ W e. LMod /\ ( Scalar ` W ) e. NrmRing ) ) |
9 |
8
|
simp2d |
|- ( W e. NrmMod -> W e. LMod ) |