Description: The scalar component of a left module is a normed group. (Contributed by Mario Carneiro, 4-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | nlmnrg.1 | |- F = ( Scalar ` W ) |
|
Assertion | nlmngp2 | |- ( W e. NrmMod -> F e. NrmGrp ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nlmnrg.1 | |- F = ( Scalar ` W ) |
|
2 | 1 | nlmnrg | |- ( W e. NrmMod -> F e. NrmRing ) |
3 | nrgngp | |- ( F e. NrmRing -> F e. NrmGrp ) |
|
4 | 2 3 | syl | |- ( W e. NrmMod -> F e. NrmGrp ) |