| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nlmnrg.1 |
|- F = ( Scalar ` W ) |
| 2 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
| 3 |
|
eqid |
|- ( norm ` W ) = ( norm ` W ) |
| 4 |
|
eqid |
|- ( .s ` W ) = ( .s ` W ) |
| 5 |
|
eqid |
|- ( Base ` F ) = ( Base ` F ) |
| 6 |
|
eqid |
|- ( norm ` F ) = ( norm ` F ) |
| 7 |
2 3 4 1 5 6
|
isnlm |
|- ( W e. NrmMod <-> ( ( W e. NrmGrp /\ W e. LMod /\ F e. NrmRing ) /\ A. x e. ( Base ` F ) A. y e. ( Base ` W ) ( ( norm ` W ) ` ( x ( .s ` W ) y ) ) = ( ( ( norm ` F ) ` x ) x. ( ( norm ` W ) ` y ) ) ) ) |
| 8 |
7
|
simplbi |
|- ( W e. NrmMod -> ( W e. NrmGrp /\ W e. LMod /\ F e. NrmRing ) ) |
| 9 |
8
|
simp3d |
|- ( W e. NrmMod -> F e. NrmRing ) |