Step |
Hyp |
Ref |
Expression |
1 |
|
nlmvscn.f |
|- F = ( Scalar ` W ) |
2 |
|
nlmvscn.sf |
|- .x. = ( .sf ` W ) |
3 |
|
nlmvscn.j |
|- J = ( TopOpen ` W ) |
4 |
|
nlmvscn.kf |
|- K = ( TopOpen ` F ) |
5 |
|
nlmlmod |
|- ( W e. NrmMod -> W e. LMod ) |
6 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
7 |
|
eqid |
|- ( Base ` F ) = ( Base ` F ) |
8 |
6 1 7 2
|
lmodscaf |
|- ( W e. LMod -> .x. : ( ( Base ` F ) X. ( Base ` W ) ) --> ( Base ` W ) ) |
9 |
5 8
|
syl |
|- ( W e. NrmMod -> .x. : ( ( Base ` F ) X. ( Base ` W ) ) --> ( Base ` W ) ) |
10 |
|
eqid |
|- ( dist ` W ) = ( dist ` W ) |
11 |
|
eqid |
|- ( dist ` F ) = ( dist ` F ) |
12 |
|
eqid |
|- ( norm ` W ) = ( norm ` W ) |
13 |
|
eqid |
|- ( norm ` F ) = ( norm ` F ) |
14 |
|
eqid |
|- ( .s ` W ) = ( .s ` W ) |
15 |
|
eqid |
|- ( ( r / 2 ) / ( ( ( norm ` F ) ` x ) + 1 ) ) = ( ( r / 2 ) / ( ( ( norm ` F ) ` x ) + 1 ) ) |
16 |
|
eqid |
|- ( ( r / 2 ) / ( ( ( norm ` W ) ` y ) + ( ( r / 2 ) / ( ( ( norm ` F ) ` x ) + 1 ) ) ) ) = ( ( r / 2 ) / ( ( ( norm ` W ) ` y ) + ( ( r / 2 ) / ( ( ( norm ` F ) ` x ) + 1 ) ) ) ) |
17 |
|
simpll |
|- ( ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) /\ r e. RR+ ) -> W e. NrmMod ) |
18 |
|
simpr |
|- ( ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) /\ r e. RR+ ) -> r e. RR+ ) |
19 |
|
simplrl |
|- ( ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) /\ r e. RR+ ) -> x e. ( Base ` F ) ) |
20 |
|
simplrr |
|- ( ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) /\ r e. RR+ ) -> y e. ( Base ` W ) ) |
21 |
1 6 7 10 11 12 13 14 15 16 17 18 19 20
|
nlmvscnlem1 |
|- ( ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) /\ r e. RR+ ) -> E. s e. RR+ A. z e. ( Base ` F ) A. w e. ( Base ` W ) ( ( ( x ( dist ` F ) z ) < s /\ ( y ( dist ` W ) w ) < s ) -> ( ( x ( .s ` W ) y ) ( dist ` W ) ( z ( .s ` W ) w ) ) < r ) ) |
22 |
21
|
ralrimiva |
|- ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) -> A. r e. RR+ E. s e. RR+ A. z e. ( Base ` F ) A. w e. ( Base ` W ) ( ( ( x ( dist ` F ) z ) < s /\ ( y ( dist ` W ) w ) < s ) -> ( ( x ( .s ` W ) y ) ( dist ` W ) ( z ( .s ` W ) w ) ) < r ) ) |
23 |
|
simplrl |
|- ( ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` F ) /\ w e. ( Base ` W ) ) ) -> x e. ( Base ` F ) ) |
24 |
|
simprl |
|- ( ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` F ) /\ w e. ( Base ` W ) ) ) -> z e. ( Base ` F ) ) |
25 |
23 24
|
ovresd |
|- ( ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` F ) /\ w e. ( Base ` W ) ) ) -> ( x ( ( dist ` F ) |` ( ( Base ` F ) X. ( Base ` F ) ) ) z ) = ( x ( dist ` F ) z ) ) |
26 |
25
|
breq1d |
|- ( ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` F ) /\ w e. ( Base ` W ) ) ) -> ( ( x ( ( dist ` F ) |` ( ( Base ` F ) X. ( Base ` F ) ) ) z ) < s <-> ( x ( dist ` F ) z ) < s ) ) |
27 |
|
simplrr |
|- ( ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` F ) /\ w e. ( Base ` W ) ) ) -> y e. ( Base ` W ) ) |
28 |
|
simprr |
|- ( ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` F ) /\ w e. ( Base ` W ) ) ) -> w e. ( Base ` W ) ) |
29 |
27 28
|
ovresd |
|- ( ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` F ) /\ w e. ( Base ` W ) ) ) -> ( y ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) w ) = ( y ( dist ` W ) w ) ) |
30 |
29
|
breq1d |
|- ( ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` F ) /\ w e. ( Base ` W ) ) ) -> ( ( y ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) w ) < s <-> ( y ( dist ` W ) w ) < s ) ) |
31 |
26 30
|
anbi12d |
|- ( ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` F ) /\ w e. ( Base ` W ) ) ) -> ( ( ( x ( ( dist ` F ) |` ( ( Base ` F ) X. ( Base ` F ) ) ) z ) < s /\ ( y ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) w ) < s ) <-> ( ( x ( dist ` F ) z ) < s /\ ( y ( dist ` W ) w ) < s ) ) ) |
32 |
6 1 7 2 14
|
scafval |
|- ( ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) -> ( x .x. y ) = ( x ( .s ` W ) y ) ) |
33 |
32
|
ad2antlr |
|- ( ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` F ) /\ w e. ( Base ` W ) ) ) -> ( x .x. y ) = ( x ( .s ` W ) y ) ) |
34 |
6 1 7 2 14
|
scafval |
|- ( ( z e. ( Base ` F ) /\ w e. ( Base ` W ) ) -> ( z .x. w ) = ( z ( .s ` W ) w ) ) |
35 |
34
|
adantl |
|- ( ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` F ) /\ w e. ( Base ` W ) ) ) -> ( z .x. w ) = ( z ( .s ` W ) w ) ) |
36 |
33 35
|
oveq12d |
|- ( ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` F ) /\ w e. ( Base ` W ) ) ) -> ( ( x .x. y ) ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ( z .x. w ) ) = ( ( x ( .s ` W ) y ) ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ( z ( .s ` W ) w ) ) ) |
37 |
5
|
ad2antrr |
|- ( ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` F ) /\ w e. ( Base ` W ) ) ) -> W e. LMod ) |
38 |
6 1 14 7
|
lmodvscl |
|- ( ( W e. LMod /\ x e. ( Base ` F ) /\ y e. ( Base ` W ) ) -> ( x ( .s ` W ) y ) e. ( Base ` W ) ) |
39 |
37 23 27 38
|
syl3anc |
|- ( ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` F ) /\ w e. ( Base ` W ) ) ) -> ( x ( .s ` W ) y ) e. ( Base ` W ) ) |
40 |
6 1 14 7
|
lmodvscl |
|- ( ( W e. LMod /\ z e. ( Base ` F ) /\ w e. ( Base ` W ) ) -> ( z ( .s ` W ) w ) e. ( Base ` W ) ) |
41 |
37 24 28 40
|
syl3anc |
|- ( ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` F ) /\ w e. ( Base ` W ) ) ) -> ( z ( .s ` W ) w ) e. ( Base ` W ) ) |
42 |
39 41
|
ovresd |
|- ( ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` F ) /\ w e. ( Base ` W ) ) ) -> ( ( x ( .s ` W ) y ) ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ( z ( .s ` W ) w ) ) = ( ( x ( .s ` W ) y ) ( dist ` W ) ( z ( .s ` W ) w ) ) ) |
43 |
36 42
|
eqtrd |
|- ( ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` F ) /\ w e. ( Base ` W ) ) ) -> ( ( x .x. y ) ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ( z .x. w ) ) = ( ( x ( .s ` W ) y ) ( dist ` W ) ( z ( .s ` W ) w ) ) ) |
44 |
43
|
breq1d |
|- ( ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` F ) /\ w e. ( Base ` W ) ) ) -> ( ( ( x .x. y ) ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ( z .x. w ) ) < r <-> ( ( x ( .s ` W ) y ) ( dist ` W ) ( z ( .s ` W ) w ) ) < r ) ) |
45 |
31 44
|
imbi12d |
|- ( ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` F ) /\ w e. ( Base ` W ) ) ) -> ( ( ( ( x ( ( dist ` F ) |` ( ( Base ` F ) X. ( Base ` F ) ) ) z ) < s /\ ( y ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) w ) < s ) -> ( ( x .x. y ) ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ( z .x. w ) ) < r ) <-> ( ( ( x ( dist ` F ) z ) < s /\ ( y ( dist ` W ) w ) < s ) -> ( ( x ( .s ` W ) y ) ( dist ` W ) ( z ( .s ` W ) w ) ) < r ) ) ) |
46 |
45
|
2ralbidva |
|- ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) -> ( A. z e. ( Base ` F ) A. w e. ( Base ` W ) ( ( ( x ( ( dist ` F ) |` ( ( Base ` F ) X. ( Base ` F ) ) ) z ) < s /\ ( y ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) w ) < s ) -> ( ( x .x. y ) ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ( z .x. w ) ) < r ) <-> A. z e. ( Base ` F ) A. w e. ( Base ` W ) ( ( ( x ( dist ` F ) z ) < s /\ ( y ( dist ` W ) w ) < s ) -> ( ( x ( .s ` W ) y ) ( dist ` W ) ( z ( .s ` W ) w ) ) < r ) ) ) |
47 |
46
|
rexbidv |
|- ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) -> ( E. s e. RR+ A. z e. ( Base ` F ) A. w e. ( Base ` W ) ( ( ( x ( ( dist ` F ) |` ( ( Base ` F ) X. ( Base ` F ) ) ) z ) < s /\ ( y ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) w ) < s ) -> ( ( x .x. y ) ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ( z .x. w ) ) < r ) <-> E. s e. RR+ A. z e. ( Base ` F ) A. w e. ( Base ` W ) ( ( ( x ( dist ` F ) z ) < s /\ ( y ( dist ` W ) w ) < s ) -> ( ( x ( .s ` W ) y ) ( dist ` W ) ( z ( .s ` W ) w ) ) < r ) ) ) |
48 |
47
|
ralbidv |
|- ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) -> ( A. r e. RR+ E. s e. RR+ A. z e. ( Base ` F ) A. w e. ( Base ` W ) ( ( ( x ( ( dist ` F ) |` ( ( Base ` F ) X. ( Base ` F ) ) ) z ) < s /\ ( y ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) w ) < s ) -> ( ( x .x. y ) ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ( z .x. w ) ) < r ) <-> A. r e. RR+ E. s e. RR+ A. z e. ( Base ` F ) A. w e. ( Base ` W ) ( ( ( x ( dist ` F ) z ) < s /\ ( y ( dist ` W ) w ) < s ) -> ( ( x ( .s ` W ) y ) ( dist ` W ) ( z ( .s ` W ) w ) ) < r ) ) ) |
49 |
22 48
|
mpbird |
|- ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) -> A. r e. RR+ E. s e. RR+ A. z e. ( Base ` F ) A. w e. ( Base ` W ) ( ( ( x ( ( dist ` F ) |` ( ( Base ` F ) X. ( Base ` F ) ) ) z ) < s /\ ( y ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) w ) < s ) -> ( ( x .x. y ) ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ( z .x. w ) ) < r ) ) |
50 |
49
|
ralrimivva |
|- ( W e. NrmMod -> A. x e. ( Base ` F ) A. y e. ( Base ` W ) A. r e. RR+ E. s e. RR+ A. z e. ( Base ` F ) A. w e. ( Base ` W ) ( ( ( x ( ( dist ` F ) |` ( ( Base ` F ) X. ( Base ` F ) ) ) z ) < s /\ ( y ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) w ) < s ) -> ( ( x .x. y ) ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ( z .x. w ) ) < r ) ) |
51 |
1
|
nlmngp2 |
|- ( W e. NrmMod -> F e. NrmGrp ) |
52 |
|
ngpms |
|- ( F e. NrmGrp -> F e. MetSp ) |
53 |
51 52
|
syl |
|- ( W e. NrmMod -> F e. MetSp ) |
54 |
|
msxms |
|- ( F e. MetSp -> F e. *MetSp ) |
55 |
|
eqid |
|- ( ( dist ` F ) |` ( ( Base ` F ) X. ( Base ` F ) ) ) = ( ( dist ` F ) |` ( ( Base ` F ) X. ( Base ` F ) ) ) |
56 |
7 55
|
xmsxmet |
|- ( F e. *MetSp -> ( ( dist ` F ) |` ( ( Base ` F ) X. ( Base ` F ) ) ) e. ( *Met ` ( Base ` F ) ) ) |
57 |
53 54 56
|
3syl |
|- ( W e. NrmMod -> ( ( dist ` F ) |` ( ( Base ` F ) X. ( Base ` F ) ) ) e. ( *Met ` ( Base ` F ) ) ) |
58 |
|
nlmngp |
|- ( W e. NrmMod -> W e. NrmGrp ) |
59 |
|
ngpms |
|- ( W e. NrmGrp -> W e. MetSp ) |
60 |
58 59
|
syl |
|- ( W e. NrmMod -> W e. MetSp ) |
61 |
|
msxms |
|- ( W e. MetSp -> W e. *MetSp ) |
62 |
|
eqid |
|- ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) = ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) |
63 |
6 62
|
xmsxmet |
|- ( W e. *MetSp -> ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) e. ( *Met ` ( Base ` W ) ) ) |
64 |
60 61 63
|
3syl |
|- ( W e. NrmMod -> ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) e. ( *Met ` ( Base ` W ) ) ) |
65 |
|
eqid |
|- ( MetOpen ` ( ( dist ` F ) |` ( ( Base ` F ) X. ( Base ` F ) ) ) ) = ( MetOpen ` ( ( dist ` F ) |` ( ( Base ` F ) X. ( Base ` F ) ) ) ) |
66 |
|
eqid |
|- ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) = ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) |
67 |
65 66 66
|
txmetcn |
|- ( ( ( ( dist ` F ) |` ( ( Base ` F ) X. ( Base ` F ) ) ) e. ( *Met ` ( Base ` F ) ) /\ ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) e. ( *Met ` ( Base ` W ) ) /\ ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) e. ( *Met ` ( Base ` W ) ) ) -> ( .x. e. ( ( ( MetOpen ` ( ( dist ` F ) |` ( ( Base ` F ) X. ( Base ` F ) ) ) ) tX ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) ) Cn ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) ) <-> ( .x. : ( ( Base ` F ) X. ( Base ` W ) ) --> ( Base ` W ) /\ A. x e. ( Base ` F ) A. y e. ( Base ` W ) A. r e. RR+ E. s e. RR+ A. z e. ( Base ` F ) A. w e. ( Base ` W ) ( ( ( x ( ( dist ` F ) |` ( ( Base ` F ) X. ( Base ` F ) ) ) z ) < s /\ ( y ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) w ) < s ) -> ( ( x .x. y ) ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ( z .x. w ) ) < r ) ) ) ) |
68 |
57 64 64 67
|
syl3anc |
|- ( W e. NrmMod -> ( .x. e. ( ( ( MetOpen ` ( ( dist ` F ) |` ( ( Base ` F ) X. ( Base ` F ) ) ) ) tX ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) ) Cn ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) ) <-> ( .x. : ( ( Base ` F ) X. ( Base ` W ) ) --> ( Base ` W ) /\ A. x e. ( Base ` F ) A. y e. ( Base ` W ) A. r e. RR+ E. s e. RR+ A. z e. ( Base ` F ) A. w e. ( Base ` W ) ( ( ( x ( ( dist ` F ) |` ( ( Base ` F ) X. ( Base ` F ) ) ) z ) < s /\ ( y ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) w ) < s ) -> ( ( x .x. y ) ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ( z .x. w ) ) < r ) ) ) ) |
69 |
9 50 68
|
mpbir2and |
|- ( W e. NrmMod -> .x. e. ( ( ( MetOpen ` ( ( dist ` F ) |` ( ( Base ` F ) X. ( Base ` F ) ) ) ) tX ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) ) Cn ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) ) ) |
70 |
4 7 55
|
mstopn |
|- ( F e. MetSp -> K = ( MetOpen ` ( ( dist ` F ) |` ( ( Base ` F ) X. ( Base ` F ) ) ) ) ) |
71 |
53 70
|
syl |
|- ( W e. NrmMod -> K = ( MetOpen ` ( ( dist ` F ) |` ( ( Base ` F ) X. ( Base ` F ) ) ) ) ) |
72 |
3 6 62
|
mstopn |
|- ( W e. MetSp -> J = ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) ) |
73 |
60 72
|
syl |
|- ( W e. NrmMod -> J = ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) ) |
74 |
71 73
|
oveq12d |
|- ( W e. NrmMod -> ( K tX J ) = ( ( MetOpen ` ( ( dist ` F ) |` ( ( Base ` F ) X. ( Base ` F ) ) ) ) tX ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) ) ) |
75 |
74 73
|
oveq12d |
|- ( W e. NrmMod -> ( ( K tX J ) Cn J ) = ( ( ( MetOpen ` ( ( dist ` F ) |` ( ( Base ` F ) X. ( Base ` F ) ) ) ) tX ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) ) Cn ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) ) ) |
76 |
69 75
|
eleqtrrd |
|- ( W e. NrmMod -> .x. e. ( ( K tX J ) Cn J ) ) |