| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mnfnre |
|- -oo e/ RR |
| 2 |
1
|
neli |
|- -. -oo e. RR |
| 3 |
2
|
intnan |
|- -. ( A e. RR /\ -oo e. RR ) |
| 4 |
3
|
intnanr |
|- -. ( ( A e. RR /\ -oo e. RR ) /\ A |
| 5 |
|
pnfnemnf |
|- +oo =/= -oo |
| 6 |
5
|
nesymi |
|- -. -oo = +oo |
| 7 |
6
|
intnan |
|- -. ( A = -oo /\ -oo = +oo ) |
| 8 |
4 7
|
pm3.2ni |
|- -. ( ( ( A e. RR /\ -oo e. RR ) /\ A |
| 9 |
6
|
intnan |
|- -. ( A e. RR /\ -oo = +oo ) |
| 10 |
2
|
intnan |
|- -. ( A = -oo /\ -oo e. RR ) |
| 11 |
9 10
|
pm3.2ni |
|- -. ( ( A e. RR /\ -oo = +oo ) \/ ( A = -oo /\ -oo e. RR ) ) |
| 12 |
8 11
|
pm3.2ni |
|- -. ( ( ( ( A e. RR /\ -oo e. RR ) /\ A |
| 13 |
|
mnfxr |
|- -oo e. RR* |
| 14 |
|
ltxr |
|- ( ( A e. RR* /\ -oo e. RR* ) -> ( A < -oo <-> ( ( ( ( A e. RR /\ -oo e. RR ) /\ A |
| 15 |
13 14
|
mpan2 |
|- ( A e. RR* -> ( A < -oo <-> ( ( ( ( A e. RR /\ -oo e. RR ) /\ A |
| 16 |
12 15
|
mtbiri |
|- ( A e. RR* -> -. A < -oo ) |