Step |
Hyp |
Ref |
Expression |
1 |
|
mnfnre |
|- -oo e/ RR |
2 |
1
|
neli |
|- -. -oo e. RR |
3 |
2
|
intnan |
|- -. ( A e. RR /\ -oo e. RR ) |
4 |
3
|
intnanr |
|- -. ( ( A e. RR /\ -oo e. RR ) /\ A |
5 |
|
pnfnemnf |
|- +oo =/= -oo |
6 |
5
|
nesymi |
|- -. -oo = +oo |
7 |
6
|
intnan |
|- -. ( A = -oo /\ -oo = +oo ) |
8 |
4 7
|
pm3.2ni |
|- -. ( ( ( A e. RR /\ -oo e. RR ) /\ A |
9 |
6
|
intnan |
|- -. ( A e. RR /\ -oo = +oo ) |
10 |
2
|
intnan |
|- -. ( A = -oo /\ -oo e. RR ) |
11 |
9 10
|
pm3.2ni |
|- -. ( ( A e. RR /\ -oo = +oo ) \/ ( A = -oo /\ -oo e. RR ) ) |
12 |
8 11
|
pm3.2ni |
|- -. ( ( ( ( A e. RR /\ -oo e. RR ) /\ A |
13 |
|
mnfxr |
|- -oo e. RR* |
14 |
|
ltxr |
|- ( ( A e. RR* /\ -oo e. RR* ) -> ( A < -oo <-> ( ( ( ( A e. RR /\ -oo e. RR ) /\ A |
15 |
13 14
|
mpan2 |
|- ( A e. RR* -> ( A < -oo <-> ( ( ( ( A e. RR /\ -oo e. RR ) /\ A |
16 |
12 15
|
mtbiri |
|- ( A e. RR* -> -. A < -oo ) |