Metamath Proof Explorer


Theorem nltpnft

Description: An extended real is not less than plus infinity iff they are equal. (Contributed by NM, 30-Jan-2006)

Ref Expression
Assertion nltpnft
|- ( A e. RR* -> ( A = +oo <-> -. A < +oo ) )

Proof

Step Hyp Ref Expression
1 pnfxr
 |-  +oo e. RR*
2 xrltnr
 |-  ( +oo e. RR* -> -. +oo < +oo )
3 1 2 ax-mp
 |-  -. +oo < +oo
4 breq1
 |-  ( A = +oo -> ( A < +oo <-> +oo < +oo ) )
5 3 4 mtbiri
 |-  ( A = +oo -> -. A < +oo )
6 pnfge
 |-  ( A e. RR* -> A <_ +oo )
7 xrleloe
 |-  ( ( A e. RR* /\ +oo e. RR* ) -> ( A <_ +oo <-> ( A < +oo \/ A = +oo ) ) )
8 1 7 mpan2
 |-  ( A e. RR* -> ( A <_ +oo <-> ( A < +oo \/ A = +oo ) ) )
9 6 8 mpbid
 |-  ( A e. RR* -> ( A < +oo \/ A = +oo ) )
10 9 ord
 |-  ( A e. RR* -> ( -. A < +oo -> A = +oo ) )
11 5 10 impbid2
 |-  ( A e. RR* -> ( A = +oo <-> -. A < +oo ) )