Step |
Hyp |
Ref |
Expression |
1 |
|
pnfxr |
|- +oo e. RR* |
2 |
|
xrltnr |
|- ( +oo e. RR* -> -. +oo < +oo ) |
3 |
1 2
|
ax-mp |
|- -. +oo < +oo |
4 |
|
breq1 |
|- ( A = +oo -> ( A < +oo <-> +oo < +oo ) ) |
5 |
3 4
|
mtbiri |
|- ( A = +oo -> -. A < +oo ) |
6 |
|
pnfge |
|- ( A e. RR* -> A <_ +oo ) |
7 |
|
xrleloe |
|- ( ( A e. RR* /\ +oo e. RR* ) -> ( A <_ +oo <-> ( A < +oo \/ A = +oo ) ) ) |
8 |
1 7
|
mpan2 |
|- ( A e. RR* -> ( A <_ +oo <-> ( A < +oo \/ A = +oo ) ) ) |
9 |
6 8
|
mpbid |
|- ( A e. RR* -> ( A < +oo \/ A = +oo ) ) |
10 |
9
|
ord |
|- ( A e. RR* -> ( -. A < +oo -> A = +oo ) ) |
11 |
5 10
|
impbid2 |
|- ( A e. RR* -> ( A = +oo <-> -. A < +oo ) ) |