Description: Norm of the identity element. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nm0.n | |- N = ( norm ` G ) | |
| nm0.z | |- .0. = ( 0g ` G ) | ||
| Assertion | nm0 | |- ( G e. NrmGrp -> ( N ` .0. ) = 0 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nm0.n | |- N = ( norm ` G ) | |
| 2 | nm0.z | |- .0. = ( 0g ` G ) | |
| 3 | eqid | |- .0. = .0. | |
| 4 | ngpgrp | |- ( G e. NrmGrp -> G e. Grp ) | |
| 5 | eqid | |- ( Base ` G ) = ( Base ` G ) | |
| 6 | 5 2 | grpidcl | |- ( G e. Grp -> .0. e. ( Base ` G ) ) | 
| 7 | 4 6 | syl | |- ( G e. NrmGrp -> .0. e. ( Base ` G ) ) | 
| 8 | 5 1 2 | nmeq0 | |- ( ( G e. NrmGrp /\ .0. e. ( Base ` G ) ) -> ( ( N ` .0. ) = 0 <-> .0. = .0. ) ) | 
| 9 | 7 8 | mpdan | |- ( G e. NrmGrp -> ( ( N ` .0. ) = 0 <-> .0. = .0. ) ) | 
| 10 | 3 9 | mpbiri | |- ( G e. NrmGrp -> ( N ` .0. ) = 0 ) |