Description: The norm of one in a nonzero normed ring. (Contributed by Mario Carneiro, 5-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nm1.n | |- N = ( norm ` R )  | 
					|
| nm1.u | |- .1. = ( 1r ` R )  | 
					||
| Assertion | nm1 | |- ( ( R e. NrmRing /\ R e. NzRing ) -> ( N ` .1. ) = 1 )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nm1.n | |- N = ( norm ` R )  | 
						|
| 2 | nm1.u | |- .1. = ( 1r ` R )  | 
						|
| 3 | eqid | |- ( AbsVal ` R ) = ( AbsVal ` R )  | 
						|
| 4 | 1 3 | nrgabv | |- ( R e. NrmRing -> N e. ( AbsVal ` R ) )  | 
						
| 5 | eqid | |- ( 0g ` R ) = ( 0g ` R )  | 
						|
| 6 | 2 5 | nzrnz | |- ( R e. NzRing -> .1. =/= ( 0g ` R ) )  | 
						
| 7 | 3 2 5 | abv1z | |- ( ( N e. ( AbsVal ` R ) /\ .1. =/= ( 0g ` R ) ) -> ( N ` .1. ) = 1 )  | 
						
| 8 | 4 6 7 | syl2an | |- ( ( R e. NrmRing /\ R e. NzRing ) -> ( N ` .1. ) = 1 )  |