| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fveq1 |  |-  ( T = if ( ( T e. LinFn /\ ( normfn ` T ) e. RR ) , T , ( ~H X. { 0 } ) ) -> ( T ` A ) = ( if ( ( T e. LinFn /\ ( normfn ` T ) e. RR ) , T , ( ~H X. { 0 } ) ) ` A ) ) | 
						
							| 2 | 1 | fveq2d |  |-  ( T = if ( ( T e. LinFn /\ ( normfn ` T ) e. RR ) , T , ( ~H X. { 0 } ) ) -> ( abs ` ( T ` A ) ) = ( abs ` ( if ( ( T e. LinFn /\ ( normfn ` T ) e. RR ) , T , ( ~H X. { 0 } ) ) ` A ) ) ) | 
						
							| 3 |  | fveq2 |  |-  ( T = if ( ( T e. LinFn /\ ( normfn ` T ) e. RR ) , T , ( ~H X. { 0 } ) ) -> ( normfn ` T ) = ( normfn ` if ( ( T e. LinFn /\ ( normfn ` T ) e. RR ) , T , ( ~H X. { 0 } ) ) ) ) | 
						
							| 4 | 3 | oveq1d |  |-  ( T = if ( ( T e. LinFn /\ ( normfn ` T ) e. RR ) , T , ( ~H X. { 0 } ) ) -> ( ( normfn ` T ) x. ( normh ` A ) ) = ( ( normfn ` if ( ( T e. LinFn /\ ( normfn ` T ) e. RR ) , T , ( ~H X. { 0 } ) ) ) x. ( normh ` A ) ) ) | 
						
							| 5 | 2 4 | breq12d |  |-  ( T = if ( ( T e. LinFn /\ ( normfn ` T ) e. RR ) , T , ( ~H X. { 0 } ) ) -> ( ( abs ` ( T ` A ) ) <_ ( ( normfn ` T ) x. ( normh ` A ) ) <-> ( abs ` ( if ( ( T e. LinFn /\ ( normfn ` T ) e. RR ) , T , ( ~H X. { 0 } ) ) ` A ) ) <_ ( ( normfn ` if ( ( T e. LinFn /\ ( normfn ` T ) e. RR ) , T , ( ~H X. { 0 } ) ) ) x. ( normh ` A ) ) ) ) | 
						
							| 6 | 5 | imbi2d |  |-  ( T = if ( ( T e. LinFn /\ ( normfn ` T ) e. RR ) , T , ( ~H X. { 0 } ) ) -> ( ( A e. ~H -> ( abs ` ( T ` A ) ) <_ ( ( normfn ` T ) x. ( normh ` A ) ) ) <-> ( A e. ~H -> ( abs ` ( if ( ( T e. LinFn /\ ( normfn ` T ) e. RR ) , T , ( ~H X. { 0 } ) ) ` A ) ) <_ ( ( normfn ` if ( ( T e. LinFn /\ ( normfn ` T ) e. RR ) , T , ( ~H X. { 0 } ) ) ) x. ( normh ` A ) ) ) ) ) | 
						
							| 7 |  | eleq1 |  |-  ( T = if ( ( T e. LinFn /\ ( normfn ` T ) e. RR ) , T , ( ~H X. { 0 } ) ) -> ( T e. LinFn <-> if ( ( T e. LinFn /\ ( normfn ` T ) e. RR ) , T , ( ~H X. { 0 } ) ) e. LinFn ) ) | 
						
							| 8 | 3 | eleq1d |  |-  ( T = if ( ( T e. LinFn /\ ( normfn ` T ) e. RR ) , T , ( ~H X. { 0 } ) ) -> ( ( normfn ` T ) e. RR <-> ( normfn ` if ( ( T e. LinFn /\ ( normfn ` T ) e. RR ) , T , ( ~H X. { 0 } ) ) ) e. RR ) ) | 
						
							| 9 | 7 8 | anbi12d |  |-  ( T = if ( ( T e. LinFn /\ ( normfn ` T ) e. RR ) , T , ( ~H X. { 0 } ) ) -> ( ( T e. LinFn /\ ( normfn ` T ) e. RR ) <-> ( if ( ( T e. LinFn /\ ( normfn ` T ) e. RR ) , T , ( ~H X. { 0 } ) ) e. LinFn /\ ( normfn ` if ( ( T e. LinFn /\ ( normfn ` T ) e. RR ) , T , ( ~H X. { 0 } ) ) ) e. RR ) ) ) | 
						
							| 10 |  | eleq1 |  |-  ( ( ~H X. { 0 } ) = if ( ( T e. LinFn /\ ( normfn ` T ) e. RR ) , T , ( ~H X. { 0 } ) ) -> ( ( ~H X. { 0 } ) e. LinFn <-> if ( ( T e. LinFn /\ ( normfn ` T ) e. RR ) , T , ( ~H X. { 0 } ) ) e. LinFn ) ) | 
						
							| 11 |  | fveq2 |  |-  ( ( ~H X. { 0 } ) = if ( ( T e. LinFn /\ ( normfn ` T ) e. RR ) , T , ( ~H X. { 0 } ) ) -> ( normfn ` ( ~H X. { 0 } ) ) = ( normfn ` if ( ( T e. LinFn /\ ( normfn ` T ) e. RR ) , T , ( ~H X. { 0 } ) ) ) ) | 
						
							| 12 | 11 | eleq1d |  |-  ( ( ~H X. { 0 } ) = if ( ( T e. LinFn /\ ( normfn ` T ) e. RR ) , T , ( ~H X. { 0 } ) ) -> ( ( normfn ` ( ~H X. { 0 } ) ) e. RR <-> ( normfn ` if ( ( T e. LinFn /\ ( normfn ` T ) e. RR ) , T , ( ~H X. { 0 } ) ) ) e. RR ) ) | 
						
							| 13 | 10 12 | anbi12d |  |-  ( ( ~H X. { 0 } ) = if ( ( T e. LinFn /\ ( normfn ` T ) e. RR ) , T , ( ~H X. { 0 } ) ) -> ( ( ( ~H X. { 0 } ) e. LinFn /\ ( normfn ` ( ~H X. { 0 } ) ) e. RR ) <-> ( if ( ( T e. LinFn /\ ( normfn ` T ) e. RR ) , T , ( ~H X. { 0 } ) ) e. LinFn /\ ( normfn ` if ( ( T e. LinFn /\ ( normfn ` T ) e. RR ) , T , ( ~H X. { 0 } ) ) ) e. RR ) ) ) | 
						
							| 14 |  | 0lnfn |  |-  ( ~H X. { 0 } ) e. LinFn | 
						
							| 15 |  | nmfn0 |  |-  ( normfn ` ( ~H X. { 0 } ) ) = 0 | 
						
							| 16 |  | 0re |  |-  0 e. RR | 
						
							| 17 | 15 16 | eqeltri |  |-  ( normfn ` ( ~H X. { 0 } ) ) e. RR | 
						
							| 18 | 14 17 | pm3.2i |  |-  ( ( ~H X. { 0 } ) e. LinFn /\ ( normfn ` ( ~H X. { 0 } ) ) e. RR ) | 
						
							| 19 | 9 13 18 | elimhyp |  |-  ( if ( ( T e. LinFn /\ ( normfn ` T ) e. RR ) , T , ( ~H X. { 0 } ) ) e. LinFn /\ ( normfn ` if ( ( T e. LinFn /\ ( normfn ` T ) e. RR ) , T , ( ~H X. { 0 } ) ) ) e. RR ) | 
						
							| 20 | 19 | nmbdfnlbi |  |-  ( A e. ~H -> ( abs ` ( if ( ( T e. LinFn /\ ( normfn ` T ) e. RR ) , T , ( ~H X. { 0 } ) ) ` A ) ) <_ ( ( normfn ` if ( ( T e. LinFn /\ ( normfn ` T ) e. RR ) , T , ( ~H X. { 0 } ) ) ) x. ( normh ` A ) ) ) | 
						
							| 21 | 6 20 | dedth |  |-  ( ( T e. LinFn /\ ( normfn ` T ) e. RR ) -> ( A e. ~H -> ( abs ` ( T ` A ) ) <_ ( ( normfn ` T ) x. ( normh ` A ) ) ) ) | 
						
							| 22 | 21 | 3impia |  |-  ( ( T e. LinFn /\ ( normfn ` T ) e. RR /\ A e. ~H ) -> ( abs ` ( T ` A ) ) <_ ( ( normfn ` T ) x. ( normh ` A ) ) ) |