Metamath Proof Explorer


Theorem nmbdfnlbi

Description: A lower bound for the norm of a bounded linear functional. (Contributed by NM, 25-Apr-2006) (New usage is discouraged.)

Ref Expression
Hypothesis nmbdfnlb.1
|- ( T e. LinFn /\ ( normfn ` T ) e. RR )
Assertion nmbdfnlbi
|- ( A e. ~H -> ( abs ` ( T ` A ) ) <_ ( ( normfn ` T ) x. ( normh ` A ) ) )

Proof

Step Hyp Ref Expression
1 nmbdfnlb.1
 |-  ( T e. LinFn /\ ( normfn ` T ) e. RR )
2 fveq2
 |-  ( A = 0h -> ( T ` A ) = ( T ` 0h ) )
3 1 simpli
 |-  T e. LinFn
4 3 lnfn0i
 |-  ( T ` 0h ) = 0
5 2 4 eqtrdi
 |-  ( A = 0h -> ( T ` A ) = 0 )
6 5 abs00bd
 |-  ( A = 0h -> ( abs ` ( T ` A ) ) = 0 )
7 0le0
 |-  0 <_ 0
8 fveq2
 |-  ( A = 0h -> ( normh ` A ) = ( normh ` 0h ) )
9 norm0
 |-  ( normh ` 0h ) = 0
10 8 9 eqtrdi
 |-  ( A = 0h -> ( normh ` A ) = 0 )
11 10 oveq2d
 |-  ( A = 0h -> ( ( normfn ` T ) x. ( normh ` A ) ) = ( ( normfn ` T ) x. 0 ) )
12 1 simpri
 |-  ( normfn ` T ) e. RR
13 12 recni
 |-  ( normfn ` T ) e. CC
14 13 mul01i
 |-  ( ( normfn ` T ) x. 0 ) = 0
15 11 14 eqtr2di
 |-  ( A = 0h -> 0 = ( ( normfn ` T ) x. ( normh ` A ) ) )
16 7 15 breqtrid
 |-  ( A = 0h -> 0 <_ ( ( normfn ` T ) x. ( normh ` A ) ) )
17 6 16 eqbrtrd
 |-  ( A = 0h -> ( abs ` ( T ` A ) ) <_ ( ( normfn ` T ) x. ( normh ` A ) ) )
18 17 adantl
 |-  ( ( A e. ~H /\ A = 0h ) -> ( abs ` ( T ` A ) ) <_ ( ( normfn ` T ) x. ( normh ` A ) ) )
19 3 lnfnfi
 |-  T : ~H --> CC
20 19 ffvelrni
 |-  ( A e. ~H -> ( T ` A ) e. CC )
21 20 abscld
 |-  ( A e. ~H -> ( abs ` ( T ` A ) ) e. RR )
22 21 adantr
 |-  ( ( A e. ~H /\ A =/= 0h ) -> ( abs ` ( T ` A ) ) e. RR )
23 22 recnd
 |-  ( ( A e. ~H /\ A =/= 0h ) -> ( abs ` ( T ` A ) ) e. CC )
24 normcl
 |-  ( A e. ~H -> ( normh ` A ) e. RR )
25 24 adantr
 |-  ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` A ) e. RR )
26 25 recnd
 |-  ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` A ) e. CC )
27 normne0
 |-  ( A e. ~H -> ( ( normh ` A ) =/= 0 <-> A =/= 0h ) )
28 27 biimpar
 |-  ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` A ) =/= 0 )
29 23 26 28 divrec2d
 |-  ( ( A e. ~H /\ A =/= 0h ) -> ( ( abs ` ( T ` A ) ) / ( normh ` A ) ) = ( ( 1 / ( normh ` A ) ) x. ( abs ` ( T ` A ) ) ) )
30 25 28 rereccld
 |-  ( ( A e. ~H /\ A =/= 0h ) -> ( 1 / ( normh ` A ) ) e. RR )
31 30 recnd
 |-  ( ( A e. ~H /\ A =/= 0h ) -> ( 1 / ( normh ` A ) ) e. CC )
32 simpl
 |-  ( ( A e. ~H /\ A =/= 0h ) -> A e. ~H )
33 3 lnfnmuli
 |-  ( ( ( 1 / ( normh ` A ) ) e. CC /\ A e. ~H ) -> ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) = ( ( 1 / ( normh ` A ) ) x. ( T ` A ) ) )
34 31 32 33 syl2anc
 |-  ( ( A e. ~H /\ A =/= 0h ) -> ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) = ( ( 1 / ( normh ` A ) ) x. ( T ` A ) ) )
35 34 fveq2d
 |-  ( ( A e. ~H /\ A =/= 0h ) -> ( abs ` ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) ) = ( abs ` ( ( 1 / ( normh ` A ) ) x. ( T ` A ) ) ) )
36 20 adantr
 |-  ( ( A e. ~H /\ A =/= 0h ) -> ( T ` A ) e. CC )
37 31 36 absmuld
 |-  ( ( A e. ~H /\ A =/= 0h ) -> ( abs ` ( ( 1 / ( normh ` A ) ) x. ( T ` A ) ) ) = ( ( abs ` ( 1 / ( normh ` A ) ) ) x. ( abs ` ( T ` A ) ) ) )
38 normgt0
 |-  ( A e. ~H -> ( A =/= 0h <-> 0 < ( normh ` A ) ) )
39 38 biimpa
 |-  ( ( A e. ~H /\ A =/= 0h ) -> 0 < ( normh ` A ) )
40 25 39 recgt0d
 |-  ( ( A e. ~H /\ A =/= 0h ) -> 0 < ( 1 / ( normh ` A ) ) )
41 0re
 |-  0 e. RR
42 ltle
 |-  ( ( 0 e. RR /\ ( 1 / ( normh ` A ) ) e. RR ) -> ( 0 < ( 1 / ( normh ` A ) ) -> 0 <_ ( 1 / ( normh ` A ) ) ) )
43 41 42 mpan
 |-  ( ( 1 / ( normh ` A ) ) e. RR -> ( 0 < ( 1 / ( normh ` A ) ) -> 0 <_ ( 1 / ( normh ` A ) ) ) )
44 30 40 43 sylc
 |-  ( ( A e. ~H /\ A =/= 0h ) -> 0 <_ ( 1 / ( normh ` A ) ) )
45 30 44 absidd
 |-  ( ( A e. ~H /\ A =/= 0h ) -> ( abs ` ( 1 / ( normh ` A ) ) ) = ( 1 / ( normh ` A ) ) )
46 45 oveq1d
 |-  ( ( A e. ~H /\ A =/= 0h ) -> ( ( abs ` ( 1 / ( normh ` A ) ) ) x. ( abs ` ( T ` A ) ) ) = ( ( 1 / ( normh ` A ) ) x. ( abs ` ( T ` A ) ) ) )
47 35 37 46 3eqtrrd
 |-  ( ( A e. ~H /\ A =/= 0h ) -> ( ( 1 / ( normh ` A ) ) x. ( abs ` ( T ` A ) ) ) = ( abs ` ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) ) )
48 29 47 eqtrd
 |-  ( ( A e. ~H /\ A =/= 0h ) -> ( ( abs ` ( T ` A ) ) / ( normh ` A ) ) = ( abs ` ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) ) )
49 hvmulcl
 |-  ( ( ( 1 / ( normh ` A ) ) e. CC /\ A e. ~H ) -> ( ( 1 / ( normh ` A ) ) .h A ) e. ~H )
50 31 32 49 syl2anc
 |-  ( ( A e. ~H /\ A =/= 0h ) -> ( ( 1 / ( normh ` A ) ) .h A ) e. ~H )
51 normcl
 |-  ( ( ( 1 / ( normh ` A ) ) .h A ) e. ~H -> ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) e. RR )
52 50 51 syl
 |-  ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) e. RR )
53 norm1
 |-  ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) = 1 )
54 eqle
 |-  ( ( ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) e. RR /\ ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) = 1 ) -> ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) <_ 1 )
55 52 53 54 syl2anc
 |-  ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) <_ 1 )
56 nmfnlb
 |-  ( ( T : ~H --> CC /\ ( ( 1 / ( normh ` A ) ) .h A ) e. ~H /\ ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) <_ 1 ) -> ( abs ` ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) ) <_ ( normfn ` T ) )
57 19 56 mp3an1
 |-  ( ( ( ( 1 / ( normh ` A ) ) .h A ) e. ~H /\ ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) <_ 1 ) -> ( abs ` ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) ) <_ ( normfn ` T ) )
58 50 55 57 syl2anc
 |-  ( ( A e. ~H /\ A =/= 0h ) -> ( abs ` ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) ) <_ ( normfn ` T ) )
59 48 58 eqbrtrd
 |-  ( ( A e. ~H /\ A =/= 0h ) -> ( ( abs ` ( T ` A ) ) / ( normh ` A ) ) <_ ( normfn ` T ) )
60 12 a1i
 |-  ( ( A e. ~H /\ A =/= 0h ) -> ( normfn ` T ) e. RR )
61 ledivmul2
 |-  ( ( ( abs ` ( T ` A ) ) e. RR /\ ( normfn ` T ) e. RR /\ ( ( normh ` A ) e. RR /\ 0 < ( normh ` A ) ) ) -> ( ( ( abs ` ( T ` A ) ) / ( normh ` A ) ) <_ ( normfn ` T ) <-> ( abs ` ( T ` A ) ) <_ ( ( normfn ` T ) x. ( normh ` A ) ) ) )
62 22 60 25 39 61 syl112anc
 |-  ( ( A e. ~H /\ A =/= 0h ) -> ( ( ( abs ` ( T ` A ) ) / ( normh ` A ) ) <_ ( normfn ` T ) <-> ( abs ` ( T ` A ) ) <_ ( ( normfn ` T ) x. ( normh ` A ) ) ) )
63 59 62 mpbid
 |-  ( ( A e. ~H /\ A =/= 0h ) -> ( abs ` ( T ` A ) ) <_ ( ( normfn ` T ) x. ( normh ` A ) ) )
64 18 63 pm2.61dane
 |-  ( A e. ~H -> ( abs ` ( T ` A ) ) <_ ( ( normfn ` T ) x. ( normh ` A ) ) )