Step |
Hyp |
Ref |
Expression |
1 |
|
nmbdfnlb.1 |
|- ( T e. LinFn /\ ( normfn ` T ) e. RR ) |
2 |
|
fveq2 |
|- ( A = 0h -> ( T ` A ) = ( T ` 0h ) ) |
3 |
1
|
simpli |
|- T e. LinFn |
4 |
3
|
lnfn0i |
|- ( T ` 0h ) = 0 |
5 |
2 4
|
eqtrdi |
|- ( A = 0h -> ( T ` A ) = 0 ) |
6 |
5
|
abs00bd |
|- ( A = 0h -> ( abs ` ( T ` A ) ) = 0 ) |
7 |
|
0le0 |
|- 0 <_ 0 |
8 |
|
fveq2 |
|- ( A = 0h -> ( normh ` A ) = ( normh ` 0h ) ) |
9 |
|
norm0 |
|- ( normh ` 0h ) = 0 |
10 |
8 9
|
eqtrdi |
|- ( A = 0h -> ( normh ` A ) = 0 ) |
11 |
10
|
oveq2d |
|- ( A = 0h -> ( ( normfn ` T ) x. ( normh ` A ) ) = ( ( normfn ` T ) x. 0 ) ) |
12 |
1
|
simpri |
|- ( normfn ` T ) e. RR |
13 |
12
|
recni |
|- ( normfn ` T ) e. CC |
14 |
13
|
mul01i |
|- ( ( normfn ` T ) x. 0 ) = 0 |
15 |
11 14
|
eqtr2di |
|- ( A = 0h -> 0 = ( ( normfn ` T ) x. ( normh ` A ) ) ) |
16 |
7 15
|
breqtrid |
|- ( A = 0h -> 0 <_ ( ( normfn ` T ) x. ( normh ` A ) ) ) |
17 |
6 16
|
eqbrtrd |
|- ( A = 0h -> ( abs ` ( T ` A ) ) <_ ( ( normfn ` T ) x. ( normh ` A ) ) ) |
18 |
17
|
adantl |
|- ( ( A e. ~H /\ A = 0h ) -> ( abs ` ( T ` A ) ) <_ ( ( normfn ` T ) x. ( normh ` A ) ) ) |
19 |
3
|
lnfnfi |
|- T : ~H --> CC |
20 |
19
|
ffvelrni |
|- ( A e. ~H -> ( T ` A ) e. CC ) |
21 |
20
|
abscld |
|- ( A e. ~H -> ( abs ` ( T ` A ) ) e. RR ) |
22 |
21
|
adantr |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( abs ` ( T ` A ) ) e. RR ) |
23 |
22
|
recnd |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( abs ` ( T ` A ) ) e. CC ) |
24 |
|
normcl |
|- ( A e. ~H -> ( normh ` A ) e. RR ) |
25 |
24
|
adantr |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` A ) e. RR ) |
26 |
25
|
recnd |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` A ) e. CC ) |
27 |
|
normne0 |
|- ( A e. ~H -> ( ( normh ` A ) =/= 0 <-> A =/= 0h ) ) |
28 |
27
|
biimpar |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` A ) =/= 0 ) |
29 |
23 26 28
|
divrec2d |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( ( abs ` ( T ` A ) ) / ( normh ` A ) ) = ( ( 1 / ( normh ` A ) ) x. ( abs ` ( T ` A ) ) ) ) |
30 |
25 28
|
rereccld |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( 1 / ( normh ` A ) ) e. RR ) |
31 |
30
|
recnd |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( 1 / ( normh ` A ) ) e. CC ) |
32 |
|
simpl |
|- ( ( A e. ~H /\ A =/= 0h ) -> A e. ~H ) |
33 |
3
|
lnfnmuli |
|- ( ( ( 1 / ( normh ` A ) ) e. CC /\ A e. ~H ) -> ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) = ( ( 1 / ( normh ` A ) ) x. ( T ` A ) ) ) |
34 |
31 32 33
|
syl2anc |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) = ( ( 1 / ( normh ` A ) ) x. ( T ` A ) ) ) |
35 |
34
|
fveq2d |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( abs ` ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) ) = ( abs ` ( ( 1 / ( normh ` A ) ) x. ( T ` A ) ) ) ) |
36 |
20
|
adantr |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( T ` A ) e. CC ) |
37 |
31 36
|
absmuld |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( abs ` ( ( 1 / ( normh ` A ) ) x. ( T ` A ) ) ) = ( ( abs ` ( 1 / ( normh ` A ) ) ) x. ( abs ` ( T ` A ) ) ) ) |
38 |
|
normgt0 |
|- ( A e. ~H -> ( A =/= 0h <-> 0 < ( normh ` A ) ) ) |
39 |
38
|
biimpa |
|- ( ( A e. ~H /\ A =/= 0h ) -> 0 < ( normh ` A ) ) |
40 |
25 39
|
recgt0d |
|- ( ( A e. ~H /\ A =/= 0h ) -> 0 < ( 1 / ( normh ` A ) ) ) |
41 |
|
0re |
|- 0 e. RR |
42 |
|
ltle |
|- ( ( 0 e. RR /\ ( 1 / ( normh ` A ) ) e. RR ) -> ( 0 < ( 1 / ( normh ` A ) ) -> 0 <_ ( 1 / ( normh ` A ) ) ) ) |
43 |
41 42
|
mpan |
|- ( ( 1 / ( normh ` A ) ) e. RR -> ( 0 < ( 1 / ( normh ` A ) ) -> 0 <_ ( 1 / ( normh ` A ) ) ) ) |
44 |
30 40 43
|
sylc |
|- ( ( A e. ~H /\ A =/= 0h ) -> 0 <_ ( 1 / ( normh ` A ) ) ) |
45 |
30 44
|
absidd |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( abs ` ( 1 / ( normh ` A ) ) ) = ( 1 / ( normh ` A ) ) ) |
46 |
45
|
oveq1d |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( ( abs ` ( 1 / ( normh ` A ) ) ) x. ( abs ` ( T ` A ) ) ) = ( ( 1 / ( normh ` A ) ) x. ( abs ` ( T ` A ) ) ) ) |
47 |
35 37 46
|
3eqtrrd |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( ( 1 / ( normh ` A ) ) x. ( abs ` ( T ` A ) ) ) = ( abs ` ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) ) ) |
48 |
29 47
|
eqtrd |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( ( abs ` ( T ` A ) ) / ( normh ` A ) ) = ( abs ` ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) ) ) |
49 |
|
hvmulcl |
|- ( ( ( 1 / ( normh ` A ) ) e. CC /\ A e. ~H ) -> ( ( 1 / ( normh ` A ) ) .h A ) e. ~H ) |
50 |
31 32 49
|
syl2anc |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( ( 1 / ( normh ` A ) ) .h A ) e. ~H ) |
51 |
|
normcl |
|- ( ( ( 1 / ( normh ` A ) ) .h A ) e. ~H -> ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) e. RR ) |
52 |
50 51
|
syl |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) e. RR ) |
53 |
|
norm1 |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) = 1 ) |
54 |
|
eqle |
|- ( ( ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) e. RR /\ ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) = 1 ) -> ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) <_ 1 ) |
55 |
52 53 54
|
syl2anc |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) <_ 1 ) |
56 |
|
nmfnlb |
|- ( ( T : ~H --> CC /\ ( ( 1 / ( normh ` A ) ) .h A ) e. ~H /\ ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) <_ 1 ) -> ( abs ` ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) ) <_ ( normfn ` T ) ) |
57 |
19 56
|
mp3an1 |
|- ( ( ( ( 1 / ( normh ` A ) ) .h A ) e. ~H /\ ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) <_ 1 ) -> ( abs ` ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) ) <_ ( normfn ` T ) ) |
58 |
50 55 57
|
syl2anc |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( abs ` ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) ) <_ ( normfn ` T ) ) |
59 |
48 58
|
eqbrtrd |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( ( abs ` ( T ` A ) ) / ( normh ` A ) ) <_ ( normfn ` T ) ) |
60 |
12
|
a1i |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( normfn ` T ) e. RR ) |
61 |
|
ledivmul2 |
|- ( ( ( abs ` ( T ` A ) ) e. RR /\ ( normfn ` T ) e. RR /\ ( ( normh ` A ) e. RR /\ 0 < ( normh ` A ) ) ) -> ( ( ( abs ` ( T ` A ) ) / ( normh ` A ) ) <_ ( normfn ` T ) <-> ( abs ` ( T ` A ) ) <_ ( ( normfn ` T ) x. ( normh ` A ) ) ) ) |
62 |
22 60 25 39 61
|
syl112anc |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( ( ( abs ` ( T ` A ) ) / ( normh ` A ) ) <_ ( normfn ` T ) <-> ( abs ` ( T ` A ) ) <_ ( ( normfn ` T ) x. ( normh ` A ) ) ) ) |
63 |
59 62
|
mpbid |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( abs ` ( T ` A ) ) <_ ( ( normfn ` T ) x. ( normh ` A ) ) ) |
64 |
18 63
|
pm2.61dane |
|- ( A e. ~H -> ( abs ` ( T ` A ) ) <_ ( ( normfn ` T ) x. ( normh ` A ) ) ) |