Step |
Hyp |
Ref |
Expression |
1 |
|
nmbdoplb.1 |
|- T e. BndLinOp |
2 |
|
fveq2 |
|- ( A = 0h -> ( T ` A ) = ( T ` 0h ) ) |
3 |
2
|
fveq2d |
|- ( A = 0h -> ( normh ` ( T ` A ) ) = ( normh ` ( T ` 0h ) ) ) |
4 |
|
fveq2 |
|- ( A = 0h -> ( normh ` A ) = ( normh ` 0h ) ) |
5 |
4
|
oveq2d |
|- ( A = 0h -> ( ( normop ` T ) x. ( normh ` A ) ) = ( ( normop ` T ) x. ( normh ` 0h ) ) ) |
6 |
3 5
|
breq12d |
|- ( A = 0h -> ( ( normh ` ( T ` A ) ) <_ ( ( normop ` T ) x. ( normh ` A ) ) <-> ( normh ` ( T ` 0h ) ) <_ ( ( normop ` T ) x. ( normh ` 0h ) ) ) ) |
7 |
|
bdopln |
|- ( T e. BndLinOp -> T e. LinOp ) |
8 |
1 7
|
ax-mp |
|- T e. LinOp |
9 |
8
|
lnopfi |
|- T : ~H --> ~H |
10 |
9
|
ffvelrni |
|- ( A e. ~H -> ( T ` A ) e. ~H ) |
11 |
|
normcl |
|- ( ( T ` A ) e. ~H -> ( normh ` ( T ` A ) ) e. RR ) |
12 |
10 11
|
syl |
|- ( A e. ~H -> ( normh ` ( T ` A ) ) e. RR ) |
13 |
12
|
adantr |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` ( T ` A ) ) e. RR ) |
14 |
13
|
recnd |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` ( T ` A ) ) e. CC ) |
15 |
|
normcl |
|- ( A e. ~H -> ( normh ` A ) e. RR ) |
16 |
15
|
adantr |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` A ) e. RR ) |
17 |
16
|
recnd |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` A ) e. CC ) |
18 |
|
normne0 |
|- ( A e. ~H -> ( ( normh ` A ) =/= 0 <-> A =/= 0h ) ) |
19 |
18
|
biimpar |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` A ) =/= 0 ) |
20 |
14 17 19
|
divrec2d |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( ( normh ` ( T ` A ) ) / ( normh ` A ) ) = ( ( 1 / ( normh ` A ) ) x. ( normh ` ( T ` A ) ) ) ) |
21 |
16 19
|
rereccld |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( 1 / ( normh ` A ) ) e. RR ) |
22 |
21
|
recnd |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( 1 / ( normh ` A ) ) e. CC ) |
23 |
|
simpl |
|- ( ( A e. ~H /\ A =/= 0h ) -> A e. ~H ) |
24 |
8
|
lnopmuli |
|- ( ( ( 1 / ( normh ` A ) ) e. CC /\ A e. ~H ) -> ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) = ( ( 1 / ( normh ` A ) ) .h ( T ` A ) ) ) |
25 |
22 23 24
|
syl2anc |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) = ( ( 1 / ( normh ` A ) ) .h ( T ` A ) ) ) |
26 |
25
|
fveq2d |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) ) = ( normh ` ( ( 1 / ( normh ` A ) ) .h ( T ` A ) ) ) ) |
27 |
10
|
adantr |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( T ` A ) e. ~H ) |
28 |
|
norm-iii |
|- ( ( ( 1 / ( normh ` A ) ) e. CC /\ ( T ` A ) e. ~H ) -> ( normh ` ( ( 1 / ( normh ` A ) ) .h ( T ` A ) ) ) = ( ( abs ` ( 1 / ( normh ` A ) ) ) x. ( normh ` ( T ` A ) ) ) ) |
29 |
22 27 28
|
syl2anc |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` ( ( 1 / ( normh ` A ) ) .h ( T ` A ) ) ) = ( ( abs ` ( 1 / ( normh ` A ) ) ) x. ( normh ` ( T ` A ) ) ) ) |
30 |
|
normgt0 |
|- ( A e. ~H -> ( A =/= 0h <-> 0 < ( normh ` A ) ) ) |
31 |
30
|
biimpa |
|- ( ( A e. ~H /\ A =/= 0h ) -> 0 < ( normh ` A ) ) |
32 |
16 31
|
recgt0d |
|- ( ( A e. ~H /\ A =/= 0h ) -> 0 < ( 1 / ( normh ` A ) ) ) |
33 |
|
0re |
|- 0 e. RR |
34 |
|
ltle |
|- ( ( 0 e. RR /\ ( 1 / ( normh ` A ) ) e. RR ) -> ( 0 < ( 1 / ( normh ` A ) ) -> 0 <_ ( 1 / ( normh ` A ) ) ) ) |
35 |
33 34
|
mpan |
|- ( ( 1 / ( normh ` A ) ) e. RR -> ( 0 < ( 1 / ( normh ` A ) ) -> 0 <_ ( 1 / ( normh ` A ) ) ) ) |
36 |
21 32 35
|
sylc |
|- ( ( A e. ~H /\ A =/= 0h ) -> 0 <_ ( 1 / ( normh ` A ) ) ) |
37 |
21 36
|
absidd |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( abs ` ( 1 / ( normh ` A ) ) ) = ( 1 / ( normh ` A ) ) ) |
38 |
37
|
oveq1d |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( ( abs ` ( 1 / ( normh ` A ) ) ) x. ( normh ` ( T ` A ) ) ) = ( ( 1 / ( normh ` A ) ) x. ( normh ` ( T ` A ) ) ) ) |
39 |
26 29 38
|
3eqtrrd |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( ( 1 / ( normh ` A ) ) x. ( normh ` ( T ` A ) ) ) = ( normh ` ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) ) ) |
40 |
20 39
|
eqtrd |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( ( normh ` ( T ` A ) ) / ( normh ` A ) ) = ( normh ` ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) ) ) |
41 |
|
hvmulcl |
|- ( ( ( 1 / ( normh ` A ) ) e. CC /\ A e. ~H ) -> ( ( 1 / ( normh ` A ) ) .h A ) e. ~H ) |
42 |
22 23 41
|
syl2anc |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( ( 1 / ( normh ` A ) ) .h A ) e. ~H ) |
43 |
|
normcl |
|- ( ( ( 1 / ( normh ` A ) ) .h A ) e. ~H -> ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) e. RR ) |
44 |
42 43
|
syl |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) e. RR ) |
45 |
|
norm1 |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) = 1 ) |
46 |
|
eqle |
|- ( ( ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) e. RR /\ ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) = 1 ) -> ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) <_ 1 ) |
47 |
44 45 46
|
syl2anc |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) <_ 1 ) |
48 |
|
nmoplb |
|- ( ( T : ~H --> ~H /\ ( ( 1 / ( normh ` A ) ) .h A ) e. ~H /\ ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) <_ 1 ) -> ( normh ` ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) ) <_ ( normop ` T ) ) |
49 |
9 48
|
mp3an1 |
|- ( ( ( ( 1 / ( normh ` A ) ) .h A ) e. ~H /\ ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) <_ 1 ) -> ( normh ` ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) ) <_ ( normop ` T ) ) |
50 |
42 47 49
|
syl2anc |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) ) <_ ( normop ` T ) ) |
51 |
40 50
|
eqbrtrd |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( ( normh ` ( T ` A ) ) / ( normh ` A ) ) <_ ( normop ` T ) ) |
52 |
|
nmopre |
|- ( T e. BndLinOp -> ( normop ` T ) e. RR ) |
53 |
1 52
|
ax-mp |
|- ( normop ` T ) e. RR |
54 |
53
|
a1i |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( normop ` T ) e. RR ) |
55 |
|
ledivmul2 |
|- ( ( ( normh ` ( T ` A ) ) e. RR /\ ( normop ` T ) e. RR /\ ( ( normh ` A ) e. RR /\ 0 < ( normh ` A ) ) ) -> ( ( ( normh ` ( T ` A ) ) / ( normh ` A ) ) <_ ( normop ` T ) <-> ( normh ` ( T ` A ) ) <_ ( ( normop ` T ) x. ( normh ` A ) ) ) ) |
56 |
13 54 16 31 55
|
syl112anc |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( ( ( normh ` ( T ` A ) ) / ( normh ` A ) ) <_ ( normop ` T ) <-> ( normh ` ( T ` A ) ) <_ ( ( normop ` T ) x. ( normh ` A ) ) ) ) |
57 |
51 56
|
mpbid |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` ( T ` A ) ) <_ ( ( normop ` T ) x. ( normh ` A ) ) ) |
58 |
|
0le0 |
|- 0 <_ 0 |
59 |
8
|
lnop0i |
|- ( T ` 0h ) = 0h |
60 |
59
|
fveq2i |
|- ( normh ` ( T ` 0h ) ) = ( normh ` 0h ) |
61 |
|
norm0 |
|- ( normh ` 0h ) = 0 |
62 |
60 61
|
eqtri |
|- ( normh ` ( T ` 0h ) ) = 0 |
63 |
61
|
oveq2i |
|- ( ( normop ` T ) x. ( normh ` 0h ) ) = ( ( normop ` T ) x. 0 ) |
64 |
53
|
recni |
|- ( normop ` T ) e. CC |
65 |
64
|
mul01i |
|- ( ( normop ` T ) x. 0 ) = 0 |
66 |
63 65
|
eqtri |
|- ( ( normop ` T ) x. ( normh ` 0h ) ) = 0 |
67 |
58 62 66
|
3brtr4i |
|- ( normh ` ( T ` 0h ) ) <_ ( ( normop ` T ) x. ( normh ` 0h ) ) |
68 |
67
|
a1i |
|- ( A e. ~H -> ( normh ` ( T ` 0h ) ) <_ ( ( normop ` T ) x. ( normh ` 0h ) ) ) |
69 |
6 57 68
|
pm2.61ne |
|- ( A e. ~H -> ( normh ` ( T ` A ) ) <_ ( ( normop ` T ) x. ( normh ` A ) ) ) |