Step |
Hyp |
Ref |
Expression |
1 |
|
nmblolbi.1 |
|- X = ( BaseSet ` U ) |
2 |
|
nmblolbi.4 |
|- L = ( normCV ` U ) |
3 |
|
nmblolbi.5 |
|- M = ( normCV ` W ) |
4 |
|
nmblolbi.6 |
|- N = ( U normOpOLD W ) |
5 |
|
nmblolbi.7 |
|- B = ( U BLnOp W ) |
6 |
|
nmblolbi.u |
|- U e. NrmCVec |
7 |
|
nmblolbi.w |
|- W e. NrmCVec |
8 |
|
nmblolbii.b |
|- T e. B |
9 |
|
fveq2 |
|- ( A = ( 0vec ` U ) -> ( T ` A ) = ( T ` ( 0vec ` U ) ) ) |
10 |
9
|
fveq2d |
|- ( A = ( 0vec ` U ) -> ( M ` ( T ` A ) ) = ( M ` ( T ` ( 0vec ` U ) ) ) ) |
11 |
|
fveq2 |
|- ( A = ( 0vec ` U ) -> ( L ` A ) = ( L ` ( 0vec ` U ) ) ) |
12 |
11
|
oveq2d |
|- ( A = ( 0vec ` U ) -> ( ( N ` T ) x. ( L ` A ) ) = ( ( N ` T ) x. ( L ` ( 0vec ` U ) ) ) ) |
13 |
10 12
|
breq12d |
|- ( A = ( 0vec ` U ) -> ( ( M ` ( T ` A ) ) <_ ( ( N ` T ) x. ( L ` A ) ) <-> ( M ` ( T ` ( 0vec ` U ) ) ) <_ ( ( N ` T ) x. ( L ` ( 0vec ` U ) ) ) ) ) |
14 |
1 2
|
nvcl |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( L ` A ) e. RR ) |
15 |
6 14
|
mpan |
|- ( A e. X -> ( L ` A ) e. RR ) |
16 |
15
|
adantr |
|- ( ( A e. X /\ A =/= ( 0vec ` U ) ) -> ( L ` A ) e. RR ) |
17 |
|
eqid |
|- ( 0vec ` U ) = ( 0vec ` U ) |
18 |
1 17 2
|
nvz |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( ( L ` A ) = 0 <-> A = ( 0vec ` U ) ) ) |
19 |
6 18
|
mpan |
|- ( A e. X -> ( ( L ` A ) = 0 <-> A = ( 0vec ` U ) ) ) |
20 |
19
|
necon3bid |
|- ( A e. X -> ( ( L ` A ) =/= 0 <-> A =/= ( 0vec ` U ) ) ) |
21 |
20
|
biimpar |
|- ( ( A e. X /\ A =/= ( 0vec ` U ) ) -> ( L ` A ) =/= 0 ) |
22 |
16 21
|
rereccld |
|- ( ( A e. X /\ A =/= ( 0vec ` U ) ) -> ( 1 / ( L ` A ) ) e. RR ) |
23 |
1 17 2
|
nvgt0 |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( A =/= ( 0vec ` U ) <-> 0 < ( L ` A ) ) ) |
24 |
6 23
|
mpan |
|- ( A e. X -> ( A =/= ( 0vec ` U ) <-> 0 < ( L ` A ) ) ) |
25 |
24
|
biimpa |
|- ( ( A e. X /\ A =/= ( 0vec ` U ) ) -> 0 < ( L ` A ) ) |
26 |
16 25
|
recgt0d |
|- ( ( A e. X /\ A =/= ( 0vec ` U ) ) -> 0 < ( 1 / ( L ` A ) ) ) |
27 |
|
0re |
|- 0 e. RR |
28 |
|
ltle |
|- ( ( 0 e. RR /\ ( 1 / ( L ` A ) ) e. RR ) -> ( 0 < ( 1 / ( L ` A ) ) -> 0 <_ ( 1 / ( L ` A ) ) ) ) |
29 |
27 22 28
|
sylancr |
|- ( ( A e. X /\ A =/= ( 0vec ` U ) ) -> ( 0 < ( 1 / ( L ` A ) ) -> 0 <_ ( 1 / ( L ` A ) ) ) ) |
30 |
26 29
|
mpd |
|- ( ( A e. X /\ A =/= ( 0vec ` U ) ) -> 0 <_ ( 1 / ( L ` A ) ) ) |
31 |
|
eqid |
|- ( BaseSet ` W ) = ( BaseSet ` W ) |
32 |
1 31 5
|
blof |
|- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. B ) -> T : X --> ( BaseSet ` W ) ) |
33 |
6 7 8 32
|
mp3an |
|- T : X --> ( BaseSet ` W ) |
34 |
33
|
ffvelrni |
|- ( A e. X -> ( T ` A ) e. ( BaseSet ` W ) ) |
35 |
34
|
adantr |
|- ( ( A e. X /\ A =/= ( 0vec ` U ) ) -> ( T ` A ) e. ( BaseSet ` W ) ) |
36 |
|
eqid |
|- ( .sOLD ` W ) = ( .sOLD ` W ) |
37 |
31 36 3
|
nvsge0 |
|- ( ( W e. NrmCVec /\ ( ( 1 / ( L ` A ) ) e. RR /\ 0 <_ ( 1 / ( L ` A ) ) ) /\ ( T ` A ) e. ( BaseSet ` W ) ) -> ( M ` ( ( 1 / ( L ` A ) ) ( .sOLD ` W ) ( T ` A ) ) ) = ( ( 1 / ( L ` A ) ) x. ( M ` ( T ` A ) ) ) ) |
38 |
7 37
|
mp3an1 |
|- ( ( ( ( 1 / ( L ` A ) ) e. RR /\ 0 <_ ( 1 / ( L ` A ) ) ) /\ ( T ` A ) e. ( BaseSet ` W ) ) -> ( M ` ( ( 1 / ( L ` A ) ) ( .sOLD ` W ) ( T ` A ) ) ) = ( ( 1 / ( L ` A ) ) x. ( M ` ( T ` A ) ) ) ) |
39 |
22 30 35 38
|
syl21anc |
|- ( ( A e. X /\ A =/= ( 0vec ` U ) ) -> ( M ` ( ( 1 / ( L ` A ) ) ( .sOLD ` W ) ( T ` A ) ) ) = ( ( 1 / ( L ` A ) ) x. ( M ` ( T ` A ) ) ) ) |
40 |
22
|
recnd |
|- ( ( A e. X /\ A =/= ( 0vec ` U ) ) -> ( 1 / ( L ` A ) ) e. CC ) |
41 |
|
simpl |
|- ( ( A e. X /\ A =/= ( 0vec ` U ) ) -> A e. X ) |
42 |
|
eqid |
|- ( U LnOp W ) = ( U LnOp W ) |
43 |
42 5
|
bloln |
|- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. B ) -> T e. ( U LnOp W ) ) |
44 |
6 7 8 43
|
mp3an |
|- T e. ( U LnOp W ) |
45 |
6 7 44
|
3pm3.2i |
|- ( U e. NrmCVec /\ W e. NrmCVec /\ T e. ( U LnOp W ) ) |
46 |
|
eqid |
|- ( .sOLD ` U ) = ( .sOLD ` U ) |
47 |
1 46 36 42
|
lnomul |
|- ( ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. ( U LnOp W ) ) /\ ( ( 1 / ( L ` A ) ) e. CC /\ A e. X ) ) -> ( T ` ( ( 1 / ( L ` A ) ) ( .sOLD ` U ) A ) ) = ( ( 1 / ( L ` A ) ) ( .sOLD ` W ) ( T ` A ) ) ) |
48 |
45 47
|
mpan |
|- ( ( ( 1 / ( L ` A ) ) e. CC /\ A e. X ) -> ( T ` ( ( 1 / ( L ` A ) ) ( .sOLD ` U ) A ) ) = ( ( 1 / ( L ` A ) ) ( .sOLD ` W ) ( T ` A ) ) ) |
49 |
40 41 48
|
syl2anc |
|- ( ( A e. X /\ A =/= ( 0vec ` U ) ) -> ( T ` ( ( 1 / ( L ` A ) ) ( .sOLD ` U ) A ) ) = ( ( 1 / ( L ` A ) ) ( .sOLD ` W ) ( T ` A ) ) ) |
50 |
49
|
fveq2d |
|- ( ( A e. X /\ A =/= ( 0vec ` U ) ) -> ( M ` ( T ` ( ( 1 / ( L ` A ) ) ( .sOLD ` U ) A ) ) ) = ( M ` ( ( 1 / ( L ` A ) ) ( .sOLD ` W ) ( T ` A ) ) ) ) |
51 |
31 3
|
nvcl |
|- ( ( W e. NrmCVec /\ ( T ` A ) e. ( BaseSet ` W ) ) -> ( M ` ( T ` A ) ) e. RR ) |
52 |
7 34 51
|
sylancr |
|- ( A e. X -> ( M ` ( T ` A ) ) e. RR ) |
53 |
52
|
adantr |
|- ( ( A e. X /\ A =/= ( 0vec ` U ) ) -> ( M ` ( T ` A ) ) e. RR ) |
54 |
53
|
recnd |
|- ( ( A e. X /\ A =/= ( 0vec ` U ) ) -> ( M ` ( T ` A ) ) e. CC ) |
55 |
16
|
recnd |
|- ( ( A e. X /\ A =/= ( 0vec ` U ) ) -> ( L ` A ) e. CC ) |
56 |
54 55 21
|
divrec2d |
|- ( ( A e. X /\ A =/= ( 0vec ` U ) ) -> ( ( M ` ( T ` A ) ) / ( L ` A ) ) = ( ( 1 / ( L ` A ) ) x. ( M ` ( T ` A ) ) ) ) |
57 |
39 50 56
|
3eqtr4rd |
|- ( ( A e. X /\ A =/= ( 0vec ` U ) ) -> ( ( M ` ( T ` A ) ) / ( L ` A ) ) = ( M ` ( T ` ( ( 1 / ( L ` A ) ) ( .sOLD ` U ) A ) ) ) ) |
58 |
1 46
|
nvscl |
|- ( ( U e. NrmCVec /\ ( 1 / ( L ` A ) ) e. CC /\ A e. X ) -> ( ( 1 / ( L ` A ) ) ( .sOLD ` U ) A ) e. X ) |
59 |
6 58
|
mp3an1 |
|- ( ( ( 1 / ( L ` A ) ) e. CC /\ A e. X ) -> ( ( 1 / ( L ` A ) ) ( .sOLD ` U ) A ) e. X ) |
60 |
59
|
ancoms |
|- ( ( A e. X /\ ( 1 / ( L ` A ) ) e. CC ) -> ( ( 1 / ( L ` A ) ) ( .sOLD ` U ) A ) e. X ) |
61 |
40 60
|
syldan |
|- ( ( A e. X /\ A =/= ( 0vec ` U ) ) -> ( ( 1 / ( L ` A ) ) ( .sOLD ` U ) A ) e. X ) |
62 |
1 2
|
nvcl |
|- ( ( U e. NrmCVec /\ ( ( 1 / ( L ` A ) ) ( .sOLD ` U ) A ) e. X ) -> ( L ` ( ( 1 / ( L ` A ) ) ( .sOLD ` U ) A ) ) e. RR ) |
63 |
6 61 62
|
sylancr |
|- ( ( A e. X /\ A =/= ( 0vec ` U ) ) -> ( L ` ( ( 1 / ( L ` A ) ) ( .sOLD ` U ) A ) ) e. RR ) |
64 |
1 46 17 2
|
nv1 |
|- ( ( U e. NrmCVec /\ A e. X /\ A =/= ( 0vec ` U ) ) -> ( L ` ( ( 1 / ( L ` A ) ) ( .sOLD ` U ) A ) ) = 1 ) |
65 |
6 64
|
mp3an1 |
|- ( ( A e. X /\ A =/= ( 0vec ` U ) ) -> ( L ` ( ( 1 / ( L ` A ) ) ( .sOLD ` U ) A ) ) = 1 ) |
66 |
|
eqle |
|- ( ( ( L ` ( ( 1 / ( L ` A ) ) ( .sOLD ` U ) A ) ) e. RR /\ ( L ` ( ( 1 / ( L ` A ) ) ( .sOLD ` U ) A ) ) = 1 ) -> ( L ` ( ( 1 / ( L ` A ) ) ( .sOLD ` U ) A ) ) <_ 1 ) |
67 |
63 65 66
|
syl2anc |
|- ( ( A e. X /\ A =/= ( 0vec ` U ) ) -> ( L ` ( ( 1 / ( L ` A ) ) ( .sOLD ` U ) A ) ) <_ 1 ) |
68 |
6 7 33
|
3pm3.2i |
|- ( U e. NrmCVec /\ W e. NrmCVec /\ T : X --> ( BaseSet ` W ) ) |
69 |
1 31 2 3 4
|
nmoolb |
|- ( ( ( U e. NrmCVec /\ W e. NrmCVec /\ T : X --> ( BaseSet ` W ) ) /\ ( ( ( 1 / ( L ` A ) ) ( .sOLD ` U ) A ) e. X /\ ( L ` ( ( 1 / ( L ` A ) ) ( .sOLD ` U ) A ) ) <_ 1 ) ) -> ( M ` ( T ` ( ( 1 / ( L ` A ) ) ( .sOLD ` U ) A ) ) ) <_ ( N ` T ) ) |
70 |
68 69
|
mpan |
|- ( ( ( ( 1 / ( L ` A ) ) ( .sOLD ` U ) A ) e. X /\ ( L ` ( ( 1 / ( L ` A ) ) ( .sOLD ` U ) A ) ) <_ 1 ) -> ( M ` ( T ` ( ( 1 / ( L ` A ) ) ( .sOLD ` U ) A ) ) ) <_ ( N ` T ) ) |
71 |
61 67 70
|
syl2anc |
|- ( ( A e. X /\ A =/= ( 0vec ` U ) ) -> ( M ` ( T ` ( ( 1 / ( L ` A ) ) ( .sOLD ` U ) A ) ) ) <_ ( N ` T ) ) |
72 |
57 71
|
eqbrtrd |
|- ( ( A e. X /\ A =/= ( 0vec ` U ) ) -> ( ( M ` ( T ` A ) ) / ( L ` A ) ) <_ ( N ` T ) ) |
73 |
1 31 4 5
|
nmblore |
|- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. B ) -> ( N ` T ) e. RR ) |
74 |
6 7 8 73
|
mp3an |
|- ( N ` T ) e. RR |
75 |
74
|
a1i |
|- ( ( A e. X /\ A =/= ( 0vec ` U ) ) -> ( N ` T ) e. RR ) |
76 |
|
ledivmul2 |
|- ( ( ( M ` ( T ` A ) ) e. RR /\ ( N ` T ) e. RR /\ ( ( L ` A ) e. RR /\ 0 < ( L ` A ) ) ) -> ( ( ( M ` ( T ` A ) ) / ( L ` A ) ) <_ ( N ` T ) <-> ( M ` ( T ` A ) ) <_ ( ( N ` T ) x. ( L ` A ) ) ) ) |
77 |
53 75 16 25 76
|
syl112anc |
|- ( ( A e. X /\ A =/= ( 0vec ` U ) ) -> ( ( ( M ` ( T ` A ) ) / ( L ` A ) ) <_ ( N ` T ) <-> ( M ` ( T ` A ) ) <_ ( ( N ` T ) x. ( L ` A ) ) ) ) |
78 |
72 77
|
mpbid |
|- ( ( A e. X /\ A =/= ( 0vec ` U ) ) -> ( M ` ( T ` A ) ) <_ ( ( N ` T ) x. ( L ` A ) ) ) |
79 |
|
0le0 |
|- 0 <_ 0 |
80 |
|
eqid |
|- ( 0vec ` W ) = ( 0vec ` W ) |
81 |
1 31 17 80 42
|
lno0 |
|- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. ( U LnOp W ) ) -> ( T ` ( 0vec ` U ) ) = ( 0vec ` W ) ) |
82 |
6 7 44 81
|
mp3an |
|- ( T ` ( 0vec ` U ) ) = ( 0vec ` W ) |
83 |
82
|
fveq2i |
|- ( M ` ( T ` ( 0vec ` U ) ) ) = ( M ` ( 0vec ` W ) ) |
84 |
80 3
|
nvz0 |
|- ( W e. NrmCVec -> ( M ` ( 0vec ` W ) ) = 0 ) |
85 |
7 84
|
ax-mp |
|- ( M ` ( 0vec ` W ) ) = 0 |
86 |
83 85
|
eqtri |
|- ( M ` ( T ` ( 0vec ` U ) ) ) = 0 |
87 |
17 2
|
nvz0 |
|- ( U e. NrmCVec -> ( L ` ( 0vec ` U ) ) = 0 ) |
88 |
6 87
|
ax-mp |
|- ( L ` ( 0vec ` U ) ) = 0 |
89 |
88
|
oveq2i |
|- ( ( N ` T ) x. ( L ` ( 0vec ` U ) ) ) = ( ( N ` T ) x. 0 ) |
90 |
74
|
recni |
|- ( N ` T ) e. CC |
91 |
90
|
mul01i |
|- ( ( N ` T ) x. 0 ) = 0 |
92 |
89 91
|
eqtri |
|- ( ( N ` T ) x. ( L ` ( 0vec ` U ) ) ) = 0 |
93 |
79 86 92
|
3brtr4i |
|- ( M ` ( T ` ( 0vec ` U ) ) ) <_ ( ( N ` T ) x. ( L ` ( 0vec ` U ) ) ) |
94 |
93
|
a1i |
|- ( A e. X -> ( M ` ( T ` ( 0vec ` U ) ) ) <_ ( ( N ` T ) x. ( L ` ( 0vec ` U ) ) ) ) |
95 |
13 78 94
|
pm2.61ne |
|- ( A e. X -> ( M ` ( T ` A ) ) <_ ( ( N ` T ) x. ( L ` A ) ) ) |