Step |
Hyp |
Ref |
Expression |
1 |
|
elin |
|- ( T e. ( LinFn i^i ContFn ) <-> ( T e. LinFn /\ T e. ContFn ) ) |
2 |
|
fveq2 |
|- ( T = if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) -> ( normfn ` T ) = ( normfn ` if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) ) ) |
3 |
2
|
eleq1d |
|- ( T = if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) -> ( ( normfn ` T ) e. RR <-> ( normfn ` if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) ) e. RR ) ) |
4 |
|
0lnfn |
|- ( ~H X. { 0 } ) e. LinFn |
5 |
|
0cnfn |
|- ( ~H X. { 0 } ) e. ContFn |
6 |
|
elin |
|- ( ( ~H X. { 0 } ) e. ( LinFn i^i ContFn ) <-> ( ( ~H X. { 0 } ) e. LinFn /\ ( ~H X. { 0 } ) e. ContFn ) ) |
7 |
4 5 6
|
mpbir2an |
|- ( ~H X. { 0 } ) e. ( LinFn i^i ContFn ) |
8 |
7
|
elimel |
|- if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) e. ( LinFn i^i ContFn ) |
9 |
|
elin |
|- ( if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) e. ( LinFn i^i ContFn ) <-> ( if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) e. LinFn /\ if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) e. ContFn ) ) |
10 |
8 9
|
mpbi |
|- ( if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) e. LinFn /\ if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) e. ContFn ) |
11 |
10
|
simpli |
|- if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) e. LinFn |
12 |
10
|
simpri |
|- if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) e. ContFn |
13 |
11 12
|
nmcfnexi |
|- ( normfn ` if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) ) e. RR |
14 |
3 13
|
dedth |
|- ( T e. ( LinFn i^i ContFn ) -> ( normfn ` T ) e. RR ) |
15 |
1 14
|
sylbir |
|- ( ( T e. LinFn /\ T e. ContFn ) -> ( normfn ` T ) e. RR ) |