| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elin |  |-  ( T e. ( LinFn i^i ContFn ) <-> ( T e. LinFn /\ T e. ContFn ) ) | 
						
							| 2 |  | fveq2 |  |-  ( T = if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) -> ( normfn ` T ) = ( normfn ` if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) ) ) | 
						
							| 3 | 2 | eleq1d |  |-  ( T = if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) -> ( ( normfn ` T ) e. RR <-> ( normfn ` if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) ) e. RR ) ) | 
						
							| 4 |  | 0lnfn |  |-  ( ~H X. { 0 } ) e. LinFn | 
						
							| 5 |  | 0cnfn |  |-  ( ~H X. { 0 } ) e. ContFn | 
						
							| 6 |  | elin |  |-  ( ( ~H X. { 0 } ) e. ( LinFn i^i ContFn ) <-> ( ( ~H X. { 0 } ) e. LinFn /\ ( ~H X. { 0 } ) e. ContFn ) ) | 
						
							| 7 | 4 5 6 | mpbir2an |  |-  ( ~H X. { 0 } ) e. ( LinFn i^i ContFn ) | 
						
							| 8 | 7 | elimel |  |-  if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) e. ( LinFn i^i ContFn ) | 
						
							| 9 |  | elin |  |-  ( if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) e. ( LinFn i^i ContFn ) <-> ( if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) e. LinFn /\ if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) e. ContFn ) ) | 
						
							| 10 | 8 9 | mpbi |  |-  ( if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) e. LinFn /\ if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) e. ContFn ) | 
						
							| 11 | 10 | simpli |  |-  if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) e. LinFn | 
						
							| 12 | 10 | simpri |  |-  if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) e. ContFn | 
						
							| 13 | 11 12 | nmcfnexi |  |-  ( normfn ` if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) ) e. RR | 
						
							| 14 | 3 13 | dedth |  |-  ( T e. ( LinFn i^i ContFn ) -> ( normfn ` T ) e. RR ) | 
						
							| 15 | 1 14 | sylbir |  |-  ( ( T e. LinFn /\ T e. ContFn ) -> ( normfn ` T ) e. RR ) |