Step |
Hyp |
Ref |
Expression |
1 |
|
elin |
|- ( T e. ( LinFn i^i ContFn ) <-> ( T e. LinFn /\ T e. ContFn ) ) |
2 |
|
fveq1 |
|- ( T = if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) -> ( T ` A ) = ( if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) ` A ) ) |
3 |
2
|
fveq2d |
|- ( T = if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) -> ( abs ` ( T ` A ) ) = ( abs ` ( if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) ` A ) ) ) |
4 |
|
fveq2 |
|- ( T = if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) -> ( normfn ` T ) = ( normfn ` if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) ) ) |
5 |
4
|
oveq1d |
|- ( T = if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) -> ( ( normfn ` T ) x. ( normh ` A ) ) = ( ( normfn ` if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) ) x. ( normh ` A ) ) ) |
6 |
3 5
|
breq12d |
|- ( T = if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) -> ( ( abs ` ( T ` A ) ) <_ ( ( normfn ` T ) x. ( normh ` A ) ) <-> ( abs ` ( if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) ` A ) ) <_ ( ( normfn ` if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) ) x. ( normh ` A ) ) ) ) |
7 |
6
|
imbi2d |
|- ( T = if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) -> ( ( A e. ~H -> ( abs ` ( T ` A ) ) <_ ( ( normfn ` T ) x. ( normh ` A ) ) ) <-> ( A e. ~H -> ( abs ` ( if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) ` A ) ) <_ ( ( normfn ` if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) ) x. ( normh ` A ) ) ) ) ) |
8 |
|
0lnfn |
|- ( ~H X. { 0 } ) e. LinFn |
9 |
|
0cnfn |
|- ( ~H X. { 0 } ) e. ContFn |
10 |
|
elin |
|- ( ( ~H X. { 0 } ) e. ( LinFn i^i ContFn ) <-> ( ( ~H X. { 0 } ) e. LinFn /\ ( ~H X. { 0 } ) e. ContFn ) ) |
11 |
8 9 10
|
mpbir2an |
|- ( ~H X. { 0 } ) e. ( LinFn i^i ContFn ) |
12 |
11
|
elimel |
|- if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) e. ( LinFn i^i ContFn ) |
13 |
|
elin |
|- ( if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) e. ( LinFn i^i ContFn ) <-> ( if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) e. LinFn /\ if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) e. ContFn ) ) |
14 |
12 13
|
mpbi |
|- ( if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) e. LinFn /\ if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) e. ContFn ) |
15 |
14
|
simpli |
|- if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) e. LinFn |
16 |
14
|
simpri |
|- if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) e. ContFn |
17 |
15 16
|
nmcfnlbi |
|- ( A e. ~H -> ( abs ` ( if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) ` A ) ) <_ ( ( normfn ` if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) ) x. ( normh ` A ) ) ) |
18 |
7 17
|
dedth |
|- ( T e. ( LinFn i^i ContFn ) -> ( A e. ~H -> ( abs ` ( T ` A ) ) <_ ( ( normfn ` T ) x. ( normh ` A ) ) ) ) |
19 |
18
|
imp |
|- ( ( T e. ( LinFn i^i ContFn ) /\ A e. ~H ) -> ( abs ` ( T ` A ) ) <_ ( ( normfn ` T ) x. ( normh ` A ) ) ) |
20 |
1 19
|
sylanbr |
|- ( ( ( T e. LinFn /\ T e. ContFn ) /\ A e. ~H ) -> ( abs ` ( T ` A ) ) <_ ( ( normfn ` T ) x. ( normh ` A ) ) ) |
21 |
20
|
3impa |
|- ( ( T e. LinFn /\ T e. ContFn /\ A e. ~H ) -> ( abs ` ( T ` A ) ) <_ ( ( normfn ` T ) x. ( normh ` A ) ) ) |