Metamath Proof Explorer


Theorem nmcfnlbi

Description: A lower bound for the norm of a continuous linear functional. Theorem 3.5(ii) of Beran p. 99. (Contributed by NM, 14-Feb-2006) (New usage is discouraged.)

Ref Expression
Hypotheses nmcfnex.1
|- T e. LinFn
nmcfnex.2
|- T e. ContFn
Assertion nmcfnlbi
|- ( A e. ~H -> ( abs ` ( T ` A ) ) <_ ( ( normfn ` T ) x. ( normh ` A ) ) )

Proof

Step Hyp Ref Expression
1 nmcfnex.1
 |-  T e. LinFn
2 nmcfnex.2
 |-  T e. ContFn
3 fveq2
 |-  ( A = 0h -> ( T ` A ) = ( T ` 0h ) )
4 1 lnfn0i
 |-  ( T ` 0h ) = 0
5 3 4 eqtrdi
 |-  ( A = 0h -> ( T ` A ) = 0 )
6 5 abs00bd
 |-  ( A = 0h -> ( abs ` ( T ` A ) ) = 0 )
7 0le0
 |-  0 <_ 0
8 fveq2
 |-  ( A = 0h -> ( normh ` A ) = ( normh ` 0h ) )
9 norm0
 |-  ( normh ` 0h ) = 0
10 8 9 eqtrdi
 |-  ( A = 0h -> ( normh ` A ) = 0 )
11 10 oveq2d
 |-  ( A = 0h -> ( ( normfn ` T ) x. ( normh ` A ) ) = ( ( normfn ` T ) x. 0 ) )
12 1 2 nmcfnexi
 |-  ( normfn ` T ) e. RR
13 12 recni
 |-  ( normfn ` T ) e. CC
14 13 mul01i
 |-  ( ( normfn ` T ) x. 0 ) = 0
15 11 14 eqtr2di
 |-  ( A = 0h -> 0 = ( ( normfn ` T ) x. ( normh ` A ) ) )
16 7 15 breqtrid
 |-  ( A = 0h -> 0 <_ ( ( normfn ` T ) x. ( normh ` A ) ) )
17 6 16 eqbrtrd
 |-  ( A = 0h -> ( abs ` ( T ` A ) ) <_ ( ( normfn ` T ) x. ( normh ` A ) ) )
18 17 adantl
 |-  ( ( A e. ~H /\ A = 0h ) -> ( abs ` ( T ` A ) ) <_ ( ( normfn ` T ) x. ( normh ` A ) ) )
19 1 lnfnfi
 |-  T : ~H --> CC
20 19 ffvelrni
 |-  ( A e. ~H -> ( T ` A ) e. CC )
21 20 abscld
 |-  ( A e. ~H -> ( abs ` ( T ` A ) ) e. RR )
22 21 adantr
 |-  ( ( A e. ~H /\ -. A = 0h ) -> ( abs ` ( T ` A ) ) e. RR )
23 22 recnd
 |-  ( ( A e. ~H /\ -. A = 0h ) -> ( abs ` ( T ` A ) ) e. CC )
24 normcl
 |-  ( A e. ~H -> ( normh ` A ) e. RR )
25 24 adantr
 |-  ( ( A e. ~H /\ -. A = 0h ) -> ( normh ` A ) e. RR )
26 25 recnd
 |-  ( ( A e. ~H /\ -. A = 0h ) -> ( normh ` A ) e. CC )
27 norm-i
 |-  ( A e. ~H -> ( ( normh ` A ) = 0 <-> A = 0h ) )
28 27 notbid
 |-  ( A e. ~H -> ( -. ( normh ` A ) = 0 <-> -. A = 0h ) )
29 28 biimpar
 |-  ( ( A e. ~H /\ -. A = 0h ) -> -. ( normh ` A ) = 0 )
30 29 neqned
 |-  ( ( A e. ~H /\ -. A = 0h ) -> ( normh ` A ) =/= 0 )
31 23 26 30 divrec2d
 |-  ( ( A e. ~H /\ -. A = 0h ) -> ( ( abs ` ( T ` A ) ) / ( normh ` A ) ) = ( ( 1 / ( normh ` A ) ) x. ( abs ` ( T ` A ) ) ) )
32 25 30 rereccld
 |-  ( ( A e. ~H /\ -. A = 0h ) -> ( 1 / ( normh ` A ) ) e. RR )
33 32 recnd
 |-  ( ( A e. ~H /\ -. A = 0h ) -> ( 1 / ( normh ` A ) ) e. CC )
34 simpl
 |-  ( ( A e. ~H /\ -. A = 0h ) -> A e. ~H )
35 1 lnfnmuli
 |-  ( ( ( 1 / ( normh ` A ) ) e. CC /\ A e. ~H ) -> ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) = ( ( 1 / ( normh ` A ) ) x. ( T ` A ) ) )
36 33 34 35 syl2anc
 |-  ( ( A e. ~H /\ -. A = 0h ) -> ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) = ( ( 1 / ( normh ` A ) ) x. ( T ` A ) ) )
37 36 fveq2d
 |-  ( ( A e. ~H /\ -. A = 0h ) -> ( abs ` ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) ) = ( abs ` ( ( 1 / ( normh ` A ) ) x. ( T ` A ) ) ) )
38 20 adantr
 |-  ( ( A e. ~H /\ -. A = 0h ) -> ( T ` A ) e. CC )
39 33 38 absmuld
 |-  ( ( A e. ~H /\ -. A = 0h ) -> ( abs ` ( ( 1 / ( normh ` A ) ) x. ( T ` A ) ) ) = ( ( abs ` ( 1 / ( normh ` A ) ) ) x. ( abs ` ( T ` A ) ) ) )
40 df-ne
 |-  ( A =/= 0h <-> -. A = 0h )
41 normgt0
 |-  ( A e. ~H -> ( A =/= 0h <-> 0 < ( normh ` A ) ) )
42 40 41 bitr3id
 |-  ( A e. ~H -> ( -. A = 0h <-> 0 < ( normh ` A ) ) )
43 42 biimpa
 |-  ( ( A e. ~H /\ -. A = 0h ) -> 0 < ( normh ` A ) )
44 25 43 recgt0d
 |-  ( ( A e. ~H /\ -. A = 0h ) -> 0 < ( 1 / ( normh ` A ) ) )
45 0re
 |-  0 e. RR
46 ltle
 |-  ( ( 0 e. RR /\ ( 1 / ( normh ` A ) ) e. RR ) -> ( 0 < ( 1 / ( normh ` A ) ) -> 0 <_ ( 1 / ( normh ` A ) ) ) )
47 45 46 mpan
 |-  ( ( 1 / ( normh ` A ) ) e. RR -> ( 0 < ( 1 / ( normh ` A ) ) -> 0 <_ ( 1 / ( normh ` A ) ) ) )
48 32 44 47 sylc
 |-  ( ( A e. ~H /\ -. A = 0h ) -> 0 <_ ( 1 / ( normh ` A ) ) )
49 32 48 absidd
 |-  ( ( A e. ~H /\ -. A = 0h ) -> ( abs ` ( 1 / ( normh ` A ) ) ) = ( 1 / ( normh ` A ) ) )
50 49 oveq1d
 |-  ( ( A e. ~H /\ -. A = 0h ) -> ( ( abs ` ( 1 / ( normh ` A ) ) ) x. ( abs ` ( T ` A ) ) ) = ( ( 1 / ( normh ` A ) ) x. ( abs ` ( T ` A ) ) ) )
51 37 39 50 3eqtrrd
 |-  ( ( A e. ~H /\ -. A = 0h ) -> ( ( 1 / ( normh ` A ) ) x. ( abs ` ( T ` A ) ) ) = ( abs ` ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) ) )
52 31 51 eqtrd
 |-  ( ( A e. ~H /\ -. A = 0h ) -> ( ( abs ` ( T ` A ) ) / ( normh ` A ) ) = ( abs ` ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) ) )
53 hvmulcl
 |-  ( ( ( 1 / ( normh ` A ) ) e. CC /\ A e. ~H ) -> ( ( 1 / ( normh ` A ) ) .h A ) e. ~H )
54 33 34 53 syl2anc
 |-  ( ( A e. ~H /\ -. A = 0h ) -> ( ( 1 / ( normh ` A ) ) .h A ) e. ~H )
55 normcl
 |-  ( ( ( 1 / ( normh ` A ) ) .h A ) e. ~H -> ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) e. RR )
56 54 55 syl
 |-  ( ( A e. ~H /\ -. A = 0h ) -> ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) e. RR )
57 norm1
 |-  ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) = 1 )
58 40 57 sylan2br
 |-  ( ( A e. ~H /\ -. A = 0h ) -> ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) = 1 )
59 eqle
 |-  ( ( ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) e. RR /\ ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) = 1 ) -> ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) <_ 1 )
60 56 58 59 syl2anc
 |-  ( ( A e. ~H /\ -. A = 0h ) -> ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) <_ 1 )
61 nmfnlb
 |-  ( ( T : ~H --> CC /\ ( ( 1 / ( normh ` A ) ) .h A ) e. ~H /\ ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) <_ 1 ) -> ( abs ` ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) ) <_ ( normfn ` T ) )
62 19 61 mp3an1
 |-  ( ( ( ( 1 / ( normh ` A ) ) .h A ) e. ~H /\ ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) <_ 1 ) -> ( abs ` ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) ) <_ ( normfn ` T ) )
63 54 60 62 syl2anc
 |-  ( ( A e. ~H /\ -. A = 0h ) -> ( abs ` ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) ) <_ ( normfn ` T ) )
64 52 63 eqbrtrd
 |-  ( ( A e. ~H /\ -. A = 0h ) -> ( ( abs ` ( T ` A ) ) / ( normh ` A ) ) <_ ( normfn ` T ) )
65 12 a1i
 |-  ( ( A e. ~H /\ -. A = 0h ) -> ( normfn ` T ) e. RR )
66 ledivmul2
 |-  ( ( ( abs ` ( T ` A ) ) e. RR /\ ( normfn ` T ) e. RR /\ ( ( normh ` A ) e. RR /\ 0 < ( normh ` A ) ) ) -> ( ( ( abs ` ( T ` A ) ) / ( normh ` A ) ) <_ ( normfn ` T ) <-> ( abs ` ( T ` A ) ) <_ ( ( normfn ` T ) x. ( normh ` A ) ) ) )
67 22 65 25 43 66 syl112anc
 |-  ( ( A e. ~H /\ -. A = 0h ) -> ( ( ( abs ` ( T ` A ) ) / ( normh ` A ) ) <_ ( normfn ` T ) <-> ( abs ` ( T ` A ) ) <_ ( ( normfn ` T ) x. ( normh ` A ) ) ) )
68 64 67 mpbid
 |-  ( ( A e. ~H /\ -. A = 0h ) -> ( abs ` ( T ` A ) ) <_ ( ( normfn ` T ) x. ( normh ` A ) ) )
69 18 68 pm2.61dan
 |-  ( A e. ~H -> ( abs ` ( T ` A ) ) <_ ( ( normfn ` T ) x. ( normh ` A ) ) )