| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nmcfnex.1 |
|- T e. LinFn |
| 2 |
|
nmcfnex.2 |
|- T e. ContFn |
| 3 |
|
fveq2 |
|- ( A = 0h -> ( T ` A ) = ( T ` 0h ) ) |
| 4 |
1
|
lnfn0i |
|- ( T ` 0h ) = 0 |
| 5 |
3 4
|
eqtrdi |
|- ( A = 0h -> ( T ` A ) = 0 ) |
| 6 |
5
|
abs00bd |
|- ( A = 0h -> ( abs ` ( T ` A ) ) = 0 ) |
| 7 |
|
0le0 |
|- 0 <_ 0 |
| 8 |
|
fveq2 |
|- ( A = 0h -> ( normh ` A ) = ( normh ` 0h ) ) |
| 9 |
|
norm0 |
|- ( normh ` 0h ) = 0 |
| 10 |
8 9
|
eqtrdi |
|- ( A = 0h -> ( normh ` A ) = 0 ) |
| 11 |
10
|
oveq2d |
|- ( A = 0h -> ( ( normfn ` T ) x. ( normh ` A ) ) = ( ( normfn ` T ) x. 0 ) ) |
| 12 |
1 2
|
nmcfnexi |
|- ( normfn ` T ) e. RR |
| 13 |
12
|
recni |
|- ( normfn ` T ) e. CC |
| 14 |
13
|
mul01i |
|- ( ( normfn ` T ) x. 0 ) = 0 |
| 15 |
11 14
|
eqtr2di |
|- ( A = 0h -> 0 = ( ( normfn ` T ) x. ( normh ` A ) ) ) |
| 16 |
7 15
|
breqtrid |
|- ( A = 0h -> 0 <_ ( ( normfn ` T ) x. ( normh ` A ) ) ) |
| 17 |
6 16
|
eqbrtrd |
|- ( A = 0h -> ( abs ` ( T ` A ) ) <_ ( ( normfn ` T ) x. ( normh ` A ) ) ) |
| 18 |
17
|
adantl |
|- ( ( A e. ~H /\ A = 0h ) -> ( abs ` ( T ` A ) ) <_ ( ( normfn ` T ) x. ( normh ` A ) ) ) |
| 19 |
1
|
lnfnfi |
|- T : ~H --> CC |
| 20 |
19
|
ffvelcdmi |
|- ( A e. ~H -> ( T ` A ) e. CC ) |
| 21 |
20
|
abscld |
|- ( A e. ~H -> ( abs ` ( T ` A ) ) e. RR ) |
| 22 |
21
|
adantr |
|- ( ( A e. ~H /\ -. A = 0h ) -> ( abs ` ( T ` A ) ) e. RR ) |
| 23 |
22
|
recnd |
|- ( ( A e. ~H /\ -. A = 0h ) -> ( abs ` ( T ` A ) ) e. CC ) |
| 24 |
|
normcl |
|- ( A e. ~H -> ( normh ` A ) e. RR ) |
| 25 |
24
|
adantr |
|- ( ( A e. ~H /\ -. A = 0h ) -> ( normh ` A ) e. RR ) |
| 26 |
25
|
recnd |
|- ( ( A e. ~H /\ -. A = 0h ) -> ( normh ` A ) e. CC ) |
| 27 |
|
norm-i |
|- ( A e. ~H -> ( ( normh ` A ) = 0 <-> A = 0h ) ) |
| 28 |
27
|
notbid |
|- ( A e. ~H -> ( -. ( normh ` A ) = 0 <-> -. A = 0h ) ) |
| 29 |
28
|
biimpar |
|- ( ( A e. ~H /\ -. A = 0h ) -> -. ( normh ` A ) = 0 ) |
| 30 |
29
|
neqned |
|- ( ( A e. ~H /\ -. A = 0h ) -> ( normh ` A ) =/= 0 ) |
| 31 |
23 26 30
|
divrec2d |
|- ( ( A e. ~H /\ -. A = 0h ) -> ( ( abs ` ( T ` A ) ) / ( normh ` A ) ) = ( ( 1 / ( normh ` A ) ) x. ( abs ` ( T ` A ) ) ) ) |
| 32 |
25 30
|
rereccld |
|- ( ( A e. ~H /\ -. A = 0h ) -> ( 1 / ( normh ` A ) ) e. RR ) |
| 33 |
32
|
recnd |
|- ( ( A e. ~H /\ -. A = 0h ) -> ( 1 / ( normh ` A ) ) e. CC ) |
| 34 |
|
simpl |
|- ( ( A e. ~H /\ -. A = 0h ) -> A e. ~H ) |
| 35 |
1
|
lnfnmuli |
|- ( ( ( 1 / ( normh ` A ) ) e. CC /\ A e. ~H ) -> ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) = ( ( 1 / ( normh ` A ) ) x. ( T ` A ) ) ) |
| 36 |
33 34 35
|
syl2anc |
|- ( ( A e. ~H /\ -. A = 0h ) -> ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) = ( ( 1 / ( normh ` A ) ) x. ( T ` A ) ) ) |
| 37 |
36
|
fveq2d |
|- ( ( A e. ~H /\ -. A = 0h ) -> ( abs ` ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) ) = ( abs ` ( ( 1 / ( normh ` A ) ) x. ( T ` A ) ) ) ) |
| 38 |
20
|
adantr |
|- ( ( A e. ~H /\ -. A = 0h ) -> ( T ` A ) e. CC ) |
| 39 |
33 38
|
absmuld |
|- ( ( A e. ~H /\ -. A = 0h ) -> ( abs ` ( ( 1 / ( normh ` A ) ) x. ( T ` A ) ) ) = ( ( abs ` ( 1 / ( normh ` A ) ) ) x. ( abs ` ( T ` A ) ) ) ) |
| 40 |
|
df-ne |
|- ( A =/= 0h <-> -. A = 0h ) |
| 41 |
|
normgt0 |
|- ( A e. ~H -> ( A =/= 0h <-> 0 < ( normh ` A ) ) ) |
| 42 |
40 41
|
bitr3id |
|- ( A e. ~H -> ( -. A = 0h <-> 0 < ( normh ` A ) ) ) |
| 43 |
42
|
biimpa |
|- ( ( A e. ~H /\ -. A = 0h ) -> 0 < ( normh ` A ) ) |
| 44 |
25 43
|
recgt0d |
|- ( ( A e. ~H /\ -. A = 0h ) -> 0 < ( 1 / ( normh ` A ) ) ) |
| 45 |
|
0re |
|- 0 e. RR |
| 46 |
|
ltle |
|- ( ( 0 e. RR /\ ( 1 / ( normh ` A ) ) e. RR ) -> ( 0 < ( 1 / ( normh ` A ) ) -> 0 <_ ( 1 / ( normh ` A ) ) ) ) |
| 47 |
45 46
|
mpan |
|- ( ( 1 / ( normh ` A ) ) e. RR -> ( 0 < ( 1 / ( normh ` A ) ) -> 0 <_ ( 1 / ( normh ` A ) ) ) ) |
| 48 |
32 44 47
|
sylc |
|- ( ( A e. ~H /\ -. A = 0h ) -> 0 <_ ( 1 / ( normh ` A ) ) ) |
| 49 |
32 48
|
absidd |
|- ( ( A e. ~H /\ -. A = 0h ) -> ( abs ` ( 1 / ( normh ` A ) ) ) = ( 1 / ( normh ` A ) ) ) |
| 50 |
49
|
oveq1d |
|- ( ( A e. ~H /\ -. A = 0h ) -> ( ( abs ` ( 1 / ( normh ` A ) ) ) x. ( abs ` ( T ` A ) ) ) = ( ( 1 / ( normh ` A ) ) x. ( abs ` ( T ` A ) ) ) ) |
| 51 |
37 39 50
|
3eqtrrd |
|- ( ( A e. ~H /\ -. A = 0h ) -> ( ( 1 / ( normh ` A ) ) x. ( abs ` ( T ` A ) ) ) = ( abs ` ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) ) ) |
| 52 |
31 51
|
eqtrd |
|- ( ( A e. ~H /\ -. A = 0h ) -> ( ( abs ` ( T ` A ) ) / ( normh ` A ) ) = ( abs ` ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) ) ) |
| 53 |
|
hvmulcl |
|- ( ( ( 1 / ( normh ` A ) ) e. CC /\ A e. ~H ) -> ( ( 1 / ( normh ` A ) ) .h A ) e. ~H ) |
| 54 |
33 34 53
|
syl2anc |
|- ( ( A e. ~H /\ -. A = 0h ) -> ( ( 1 / ( normh ` A ) ) .h A ) e. ~H ) |
| 55 |
|
normcl |
|- ( ( ( 1 / ( normh ` A ) ) .h A ) e. ~H -> ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) e. RR ) |
| 56 |
54 55
|
syl |
|- ( ( A e. ~H /\ -. A = 0h ) -> ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) e. RR ) |
| 57 |
|
norm1 |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) = 1 ) |
| 58 |
40 57
|
sylan2br |
|- ( ( A e. ~H /\ -. A = 0h ) -> ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) = 1 ) |
| 59 |
|
eqle |
|- ( ( ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) e. RR /\ ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) = 1 ) -> ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) <_ 1 ) |
| 60 |
56 58 59
|
syl2anc |
|- ( ( A e. ~H /\ -. A = 0h ) -> ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) <_ 1 ) |
| 61 |
|
nmfnlb |
|- ( ( T : ~H --> CC /\ ( ( 1 / ( normh ` A ) ) .h A ) e. ~H /\ ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) <_ 1 ) -> ( abs ` ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) ) <_ ( normfn ` T ) ) |
| 62 |
19 61
|
mp3an1 |
|- ( ( ( ( 1 / ( normh ` A ) ) .h A ) e. ~H /\ ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) <_ 1 ) -> ( abs ` ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) ) <_ ( normfn ` T ) ) |
| 63 |
54 60 62
|
syl2anc |
|- ( ( A e. ~H /\ -. A = 0h ) -> ( abs ` ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) ) <_ ( normfn ` T ) ) |
| 64 |
52 63
|
eqbrtrd |
|- ( ( A e. ~H /\ -. A = 0h ) -> ( ( abs ` ( T ` A ) ) / ( normh ` A ) ) <_ ( normfn ` T ) ) |
| 65 |
12
|
a1i |
|- ( ( A e. ~H /\ -. A = 0h ) -> ( normfn ` T ) e. RR ) |
| 66 |
|
ledivmul2 |
|- ( ( ( abs ` ( T ` A ) ) e. RR /\ ( normfn ` T ) e. RR /\ ( ( normh ` A ) e. RR /\ 0 < ( normh ` A ) ) ) -> ( ( ( abs ` ( T ` A ) ) / ( normh ` A ) ) <_ ( normfn ` T ) <-> ( abs ` ( T ` A ) ) <_ ( ( normfn ` T ) x. ( normh ` A ) ) ) ) |
| 67 |
22 65 25 43 66
|
syl112anc |
|- ( ( A e. ~H /\ -. A = 0h ) -> ( ( ( abs ` ( T ` A ) ) / ( normh ` A ) ) <_ ( normfn ` T ) <-> ( abs ` ( T ` A ) ) <_ ( ( normfn ` T ) x. ( normh ` A ) ) ) ) |
| 68 |
64 67
|
mpbid |
|- ( ( A e. ~H /\ -. A = 0h ) -> ( abs ` ( T ` A ) ) <_ ( ( normfn ` T ) x. ( normh ` A ) ) ) |
| 69 |
18 68
|
pm2.61dan |
|- ( A e. ~H -> ( abs ` ( T ` A ) ) <_ ( ( normfn ` T ) x. ( normh ` A ) ) ) |