Description: The norm of a normed group is closed in the reals. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmf.x | |- X = ( Base ` G ) |
|
| nmf.n | |- N = ( norm ` G ) |
||
| Assertion | nmcl | |- ( ( G e. NrmGrp /\ A e. X ) -> ( N ` A ) e. RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmf.x | |- X = ( Base ` G ) |
|
| 2 | nmf.n | |- N = ( norm ` G ) |
|
| 3 | 1 2 | nmf | |- ( G e. NrmGrp -> N : X --> RR ) |
| 4 | 3 | ffvelcdmda | |- ( ( G e. NrmGrp /\ A e. X ) -> ( N ` A ) e. RR ) |