| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nmcn.n |  |-  N = ( norm ` G ) | 
						
							| 2 |  | nmcn.j |  |-  J = ( TopOpen ` G ) | 
						
							| 3 |  | nmcn.k |  |-  K = ( topGen ` ran (,) ) | 
						
							| 4 |  | eqid |  |-  ( Base ` G ) = ( Base ` G ) | 
						
							| 5 |  | eqid |  |-  ( 0g ` G ) = ( 0g ` G ) | 
						
							| 6 |  | eqid |  |-  ( dist ` G ) = ( dist ` G ) | 
						
							| 7 | 1 4 5 6 | nmfval |  |-  N = ( x e. ( Base ` G ) |-> ( x ( dist ` G ) ( 0g ` G ) ) ) | 
						
							| 8 |  | ngpms |  |-  ( G e. NrmGrp -> G e. MetSp ) | 
						
							| 9 |  | ngptps |  |-  ( G e. NrmGrp -> G e. TopSp ) | 
						
							| 10 | 4 2 | istps |  |-  ( G e. TopSp <-> J e. ( TopOn ` ( Base ` G ) ) ) | 
						
							| 11 | 9 10 | sylib |  |-  ( G e. NrmGrp -> J e. ( TopOn ` ( Base ` G ) ) ) | 
						
							| 12 | 11 | cnmptid |  |-  ( G e. NrmGrp -> ( x e. ( Base ` G ) |-> x ) e. ( J Cn J ) ) | 
						
							| 13 |  | ngpgrp |  |-  ( G e. NrmGrp -> G e. Grp ) | 
						
							| 14 | 4 5 | grpidcl |  |-  ( G e. Grp -> ( 0g ` G ) e. ( Base ` G ) ) | 
						
							| 15 | 13 14 | syl |  |-  ( G e. NrmGrp -> ( 0g ` G ) e. ( Base ` G ) ) | 
						
							| 16 | 11 11 15 | cnmptc |  |-  ( G e. NrmGrp -> ( x e. ( Base ` G ) |-> ( 0g ` G ) ) e. ( J Cn J ) ) | 
						
							| 17 | 6 2 3 8 11 12 16 | cnmpt1ds |  |-  ( G e. NrmGrp -> ( x e. ( Base ` G ) |-> ( x ( dist ` G ) ( 0g ` G ) ) ) e. ( J Cn K ) ) | 
						
							| 18 | 7 17 | eqeltrid |  |-  ( G e. NrmGrp -> N e. ( J Cn K ) ) |