Step |
Hyp |
Ref |
Expression |
1 |
|
nmcn.n |
|- N = ( norm ` G ) |
2 |
|
nmcn.j |
|- J = ( TopOpen ` G ) |
3 |
|
nmcn.k |
|- K = ( topGen ` ran (,) ) |
4 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
5 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
6 |
|
eqid |
|- ( dist ` G ) = ( dist ` G ) |
7 |
1 4 5 6
|
nmfval |
|- N = ( x e. ( Base ` G ) |-> ( x ( dist ` G ) ( 0g ` G ) ) ) |
8 |
|
ngpms |
|- ( G e. NrmGrp -> G e. MetSp ) |
9 |
|
ngptps |
|- ( G e. NrmGrp -> G e. TopSp ) |
10 |
4 2
|
istps |
|- ( G e. TopSp <-> J e. ( TopOn ` ( Base ` G ) ) ) |
11 |
9 10
|
sylib |
|- ( G e. NrmGrp -> J e. ( TopOn ` ( Base ` G ) ) ) |
12 |
11
|
cnmptid |
|- ( G e. NrmGrp -> ( x e. ( Base ` G ) |-> x ) e. ( J Cn J ) ) |
13 |
|
ngpgrp |
|- ( G e. NrmGrp -> G e. Grp ) |
14 |
4 5
|
grpidcl |
|- ( G e. Grp -> ( 0g ` G ) e. ( Base ` G ) ) |
15 |
13 14
|
syl |
|- ( G e. NrmGrp -> ( 0g ` G ) e. ( Base ` G ) ) |
16 |
11 11 15
|
cnmptc |
|- ( G e. NrmGrp -> ( x e. ( Base ` G ) |-> ( 0g ` G ) ) e. ( J Cn J ) ) |
17 |
6 2 3 8 11 12 16
|
cnmpt1ds |
|- ( G e. NrmGrp -> ( x e. ( Base ` G ) |-> ( x ( dist ` G ) ( 0g ` G ) ) ) e. ( J Cn K ) ) |
18 |
7 17
|
eqeltrid |
|- ( G e. NrmGrp -> N e. ( J Cn K ) ) |