Description: The norm of a normed complex vector space is a continuous function to CC . (For RR , see nmcvcn .) (Contributed by NM, 12-Aug-2007) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | nmcnc.1 | |- N = ( normCV ` U ) |
|
nmcnc.2 | |- C = ( IndMet ` U ) |
||
nmcnc.j | |- J = ( MetOpen ` C ) |
||
nmcnc.k | |- K = ( TopOpen ` CCfld ) |
||
Assertion | nmcnc | |- ( U e. NrmCVec -> N e. ( J Cn K ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmcnc.1 | |- N = ( normCV ` U ) |
|
2 | nmcnc.2 | |- C = ( IndMet ` U ) |
|
3 | nmcnc.j | |- J = ( MetOpen ` C ) |
|
4 | nmcnc.k | |- K = ( TopOpen ` CCfld ) |
|
5 | 4 | cnfldtop | |- K e. Top |
6 | cnrest2r | |- ( K e. Top -> ( J Cn ( K |`t RR ) ) C_ ( J Cn K ) ) |
|
7 | 5 6 | ax-mp | |- ( J Cn ( K |`t RR ) ) C_ ( J Cn K ) |
8 | 4 | tgioo2 | |- ( topGen ` ran (,) ) = ( K |`t RR ) |
9 | 8 | eqcomi | |- ( K |`t RR ) = ( topGen ` ran (,) ) |
10 | 1 2 3 9 | nmcvcn | |- ( U e. NrmCVec -> N e. ( J Cn ( K |`t RR ) ) ) |
11 | 7 10 | sselid | |- ( U e. NrmCVec -> N e. ( J Cn K ) ) |