Metamath Proof Explorer


Theorem nmcnc

Description: The norm of a normed complex vector space is a continuous function to CC . (For RR , see nmcvcn .) (Contributed by NM, 12-Aug-2007) (New usage is discouraged.)

Ref Expression
Hypotheses nmcnc.1
|- N = ( normCV ` U )
nmcnc.2
|- C = ( IndMet ` U )
nmcnc.j
|- J = ( MetOpen ` C )
nmcnc.k
|- K = ( TopOpen ` CCfld )
Assertion nmcnc
|- ( U e. NrmCVec -> N e. ( J Cn K ) )

Proof

Step Hyp Ref Expression
1 nmcnc.1
 |-  N = ( normCV ` U )
2 nmcnc.2
 |-  C = ( IndMet ` U )
3 nmcnc.j
 |-  J = ( MetOpen ` C )
4 nmcnc.k
 |-  K = ( TopOpen ` CCfld )
5 4 cnfldtop
 |-  K e. Top
6 cnrest2r
 |-  ( K e. Top -> ( J Cn ( K |`t RR ) ) C_ ( J Cn K ) )
7 5 6 ax-mp
 |-  ( J Cn ( K |`t RR ) ) C_ ( J Cn K )
8 4 tgioo2
 |-  ( topGen ` ran (,) ) = ( K |`t RR )
9 8 eqcomi
 |-  ( K |`t RR ) = ( topGen ` ran (,) )
10 1 2 3 9 nmcvcn
 |-  ( U e. NrmCVec -> N e. ( J Cn ( K |`t RR ) ) )
11 7 10 sselid
 |-  ( U e. NrmCVec -> N e. ( J Cn K ) )