| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nmcnc.1 |
|- N = ( normCV ` U ) |
| 2 |
|
nmcnc.2 |
|- C = ( IndMet ` U ) |
| 3 |
|
nmcnc.j |
|- J = ( MetOpen ` C ) |
| 4 |
|
nmcnc.k |
|- K = ( TopOpen ` CCfld ) |
| 5 |
4
|
cnfldtop |
|- K e. Top |
| 6 |
|
cnrest2r |
|- ( K e. Top -> ( J Cn ( K |`t RR ) ) C_ ( J Cn K ) ) |
| 7 |
5 6
|
ax-mp |
|- ( J Cn ( K |`t RR ) ) C_ ( J Cn K ) |
| 8 |
4
|
tgioo2 |
|- ( topGen ` ran (,) ) = ( K |`t RR ) |
| 9 |
8
|
eqcomi |
|- ( K |`t RR ) = ( topGen ` ran (,) ) |
| 10 |
1 2 3 9
|
nmcvcn |
|- ( U e. NrmCVec -> N e. ( J Cn ( K |`t RR ) ) ) |
| 11 |
7 10
|
sselid |
|- ( U e. NrmCVec -> N e. ( J Cn K ) ) |