Step |
Hyp |
Ref |
Expression |
1 |
|
elin |
|- ( T e. ( LinOp i^i ContOp ) <-> ( T e. LinOp /\ T e. ContOp ) ) |
2 |
|
fveq2 |
|- ( T = if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) -> ( normop ` T ) = ( normop ` if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) ) ) |
3 |
2
|
eleq1d |
|- ( T = if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) -> ( ( normop ` T ) e. RR <-> ( normop ` if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) ) e. RR ) ) |
4 |
|
idlnop |
|- ( _I |` ~H ) e. LinOp |
5 |
|
idcnop |
|- ( _I |` ~H ) e. ContOp |
6 |
|
elin |
|- ( ( _I |` ~H ) e. ( LinOp i^i ContOp ) <-> ( ( _I |` ~H ) e. LinOp /\ ( _I |` ~H ) e. ContOp ) ) |
7 |
4 5 6
|
mpbir2an |
|- ( _I |` ~H ) e. ( LinOp i^i ContOp ) |
8 |
7
|
elimel |
|- if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) e. ( LinOp i^i ContOp ) |
9 |
|
elin |
|- ( if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) e. ( LinOp i^i ContOp ) <-> ( if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) e. LinOp /\ if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) e. ContOp ) ) |
10 |
8 9
|
mpbi |
|- ( if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) e. LinOp /\ if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) e. ContOp ) |
11 |
10
|
simpli |
|- if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) e. LinOp |
12 |
10
|
simpri |
|- if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) e. ContOp |
13 |
11 12
|
nmcopexi |
|- ( normop ` if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) ) e. RR |
14 |
3 13
|
dedth |
|- ( T e. ( LinOp i^i ContOp ) -> ( normop ` T ) e. RR ) |
15 |
1 14
|
sylbir |
|- ( ( T e. LinOp /\ T e. ContOp ) -> ( normop ` T ) e. RR ) |