| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elin |  |-  ( T e. ( LinOp i^i ContOp ) <-> ( T e. LinOp /\ T e. ContOp ) ) | 
						
							| 2 |  | fveq2 |  |-  ( T = if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) -> ( normop ` T ) = ( normop ` if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) ) ) | 
						
							| 3 | 2 | eleq1d |  |-  ( T = if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) -> ( ( normop ` T ) e. RR <-> ( normop ` if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) ) e. RR ) ) | 
						
							| 4 |  | idlnop |  |-  ( _I |` ~H ) e. LinOp | 
						
							| 5 |  | idcnop |  |-  ( _I |` ~H ) e. ContOp | 
						
							| 6 |  | elin |  |-  ( ( _I |` ~H ) e. ( LinOp i^i ContOp ) <-> ( ( _I |` ~H ) e. LinOp /\ ( _I |` ~H ) e. ContOp ) ) | 
						
							| 7 | 4 5 6 | mpbir2an |  |-  ( _I |` ~H ) e. ( LinOp i^i ContOp ) | 
						
							| 8 | 7 | elimel |  |-  if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) e. ( LinOp i^i ContOp ) | 
						
							| 9 |  | elin |  |-  ( if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) e. ( LinOp i^i ContOp ) <-> ( if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) e. LinOp /\ if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) e. ContOp ) ) | 
						
							| 10 | 8 9 | mpbi |  |-  ( if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) e. LinOp /\ if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) e. ContOp ) | 
						
							| 11 | 10 | simpli |  |-  if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) e. LinOp | 
						
							| 12 | 10 | simpri |  |-  if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) e. ContOp | 
						
							| 13 | 11 12 | nmcopexi |  |-  ( normop ` if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) ) e. RR | 
						
							| 14 | 3 13 | dedth |  |-  ( T e. ( LinOp i^i ContOp ) -> ( normop ` T ) e. RR ) | 
						
							| 15 | 1 14 | sylbir |  |-  ( ( T e. LinOp /\ T e. ContOp ) -> ( normop ` T ) e. RR ) |