Metamath Proof Explorer


Theorem nmcopex

Description: The norm of a continuous linear Hilbert space operator exists. Theorem 3.5(i) of Beran p. 99. (Contributed by NM, 7-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion nmcopex
|- ( ( T e. LinOp /\ T e. ContOp ) -> ( normop ` T ) e. RR )

Proof

Step Hyp Ref Expression
1 elin
 |-  ( T e. ( LinOp i^i ContOp ) <-> ( T e. LinOp /\ T e. ContOp ) )
2 fveq2
 |-  ( T = if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) -> ( normop ` T ) = ( normop ` if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) ) )
3 2 eleq1d
 |-  ( T = if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) -> ( ( normop ` T ) e. RR <-> ( normop ` if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) ) e. RR ) )
4 idlnop
 |-  ( _I |` ~H ) e. LinOp
5 idcnop
 |-  ( _I |` ~H ) e. ContOp
6 elin
 |-  ( ( _I |` ~H ) e. ( LinOp i^i ContOp ) <-> ( ( _I |` ~H ) e. LinOp /\ ( _I |` ~H ) e. ContOp ) )
7 4 5 6 mpbir2an
 |-  ( _I |` ~H ) e. ( LinOp i^i ContOp )
8 7 elimel
 |-  if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) e. ( LinOp i^i ContOp )
9 elin
 |-  ( if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) e. ( LinOp i^i ContOp ) <-> ( if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) e. LinOp /\ if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) e. ContOp ) )
10 8 9 mpbi
 |-  ( if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) e. LinOp /\ if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) e. ContOp )
11 10 simpli
 |-  if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) e. LinOp
12 10 simpri
 |-  if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) e. ContOp
13 11 12 nmcopexi
 |-  ( normop ` if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) ) e. RR
14 3 13 dedth
 |-  ( T e. ( LinOp i^i ContOp ) -> ( normop ` T ) e. RR )
15 1 14 sylbir
 |-  ( ( T e. LinOp /\ T e. ContOp ) -> ( normop ` T ) e. RR )