| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nmcopex.1 |  |-  T e. LinOp | 
						
							| 2 |  | nmcopex.2 |  |-  T e. ContOp | 
						
							| 3 |  | ax-hv0cl |  |-  0h e. ~H | 
						
							| 4 |  | 1rp |  |-  1 e. RR+ | 
						
							| 5 |  | cnopc |  |-  ( ( T e. ContOp /\ 0h e. ~H /\ 1 e. RR+ ) -> E. y e. RR+ A. z e. ~H ( ( normh ` ( z -h 0h ) ) < y -> ( normh ` ( ( T ` z ) -h ( T ` 0h ) ) ) < 1 ) ) | 
						
							| 6 | 2 3 4 5 | mp3an |  |-  E. y e. RR+ A. z e. ~H ( ( normh ` ( z -h 0h ) ) < y -> ( normh ` ( ( T ` z ) -h ( T ` 0h ) ) ) < 1 ) | 
						
							| 7 |  | hvsub0 |  |-  ( z e. ~H -> ( z -h 0h ) = z ) | 
						
							| 8 | 7 | fveq2d |  |-  ( z e. ~H -> ( normh ` ( z -h 0h ) ) = ( normh ` z ) ) | 
						
							| 9 | 8 | breq1d |  |-  ( z e. ~H -> ( ( normh ` ( z -h 0h ) ) < y <-> ( normh ` z ) < y ) ) | 
						
							| 10 | 1 | lnop0i |  |-  ( T ` 0h ) = 0h | 
						
							| 11 | 10 | oveq2i |  |-  ( ( T ` z ) -h ( T ` 0h ) ) = ( ( T ` z ) -h 0h ) | 
						
							| 12 | 1 | lnopfi |  |-  T : ~H --> ~H | 
						
							| 13 | 12 | ffvelcdmi |  |-  ( z e. ~H -> ( T ` z ) e. ~H ) | 
						
							| 14 |  | hvsub0 |  |-  ( ( T ` z ) e. ~H -> ( ( T ` z ) -h 0h ) = ( T ` z ) ) | 
						
							| 15 | 13 14 | syl |  |-  ( z e. ~H -> ( ( T ` z ) -h 0h ) = ( T ` z ) ) | 
						
							| 16 | 11 15 | eqtrid |  |-  ( z e. ~H -> ( ( T ` z ) -h ( T ` 0h ) ) = ( T ` z ) ) | 
						
							| 17 | 16 | fveq2d |  |-  ( z e. ~H -> ( normh ` ( ( T ` z ) -h ( T ` 0h ) ) ) = ( normh ` ( T ` z ) ) ) | 
						
							| 18 | 17 | breq1d |  |-  ( z e. ~H -> ( ( normh ` ( ( T ` z ) -h ( T ` 0h ) ) ) < 1 <-> ( normh ` ( T ` z ) ) < 1 ) ) | 
						
							| 19 | 9 18 | imbi12d |  |-  ( z e. ~H -> ( ( ( normh ` ( z -h 0h ) ) < y -> ( normh ` ( ( T ` z ) -h ( T ` 0h ) ) ) < 1 ) <-> ( ( normh ` z ) < y -> ( normh ` ( T ` z ) ) < 1 ) ) ) | 
						
							| 20 | 19 | ralbiia |  |-  ( A. z e. ~H ( ( normh ` ( z -h 0h ) ) < y -> ( normh ` ( ( T ` z ) -h ( T ` 0h ) ) ) < 1 ) <-> A. z e. ~H ( ( normh ` z ) < y -> ( normh ` ( T ` z ) ) < 1 ) ) | 
						
							| 21 | 20 | rexbii |  |-  ( E. y e. RR+ A. z e. ~H ( ( normh ` ( z -h 0h ) ) < y -> ( normh ` ( ( T ` z ) -h ( T ` 0h ) ) ) < 1 ) <-> E. y e. RR+ A. z e. ~H ( ( normh ` z ) < y -> ( normh ` ( T ` z ) ) < 1 ) ) | 
						
							| 22 | 6 21 | mpbi |  |-  E. y e. RR+ A. z e. ~H ( ( normh ` z ) < y -> ( normh ` ( T ` z ) ) < 1 ) | 
						
							| 23 |  | nmopval |  |-  ( T : ~H --> ~H -> ( normop ` T ) = sup ( { m | E. x e. ~H ( ( normh ` x ) <_ 1 /\ m = ( normh ` ( T ` x ) ) ) } , RR* , < ) ) | 
						
							| 24 | 12 23 | ax-mp |  |-  ( normop ` T ) = sup ( { m | E. x e. ~H ( ( normh ` x ) <_ 1 /\ m = ( normh ` ( T ` x ) ) ) } , RR* , < ) | 
						
							| 25 | 12 | ffvelcdmi |  |-  ( x e. ~H -> ( T ` x ) e. ~H ) | 
						
							| 26 |  | normcl |  |-  ( ( T ` x ) e. ~H -> ( normh ` ( T ` x ) ) e. RR ) | 
						
							| 27 | 25 26 | syl |  |-  ( x e. ~H -> ( normh ` ( T ` x ) ) e. RR ) | 
						
							| 28 | 10 | fveq2i |  |-  ( normh ` ( T ` 0h ) ) = ( normh ` 0h ) | 
						
							| 29 |  | norm0 |  |-  ( normh ` 0h ) = 0 | 
						
							| 30 | 28 29 | eqtri |  |-  ( normh ` ( T ` 0h ) ) = 0 | 
						
							| 31 |  | rpcn |  |-  ( ( y / 2 ) e. RR+ -> ( y / 2 ) e. CC ) | 
						
							| 32 | 1 | lnopmuli |  |-  ( ( ( y / 2 ) e. CC /\ x e. ~H ) -> ( T ` ( ( y / 2 ) .h x ) ) = ( ( y / 2 ) .h ( T ` x ) ) ) | 
						
							| 33 | 31 32 | sylan |  |-  ( ( ( y / 2 ) e. RR+ /\ x e. ~H ) -> ( T ` ( ( y / 2 ) .h x ) ) = ( ( y / 2 ) .h ( T ` x ) ) ) | 
						
							| 34 | 33 | fveq2d |  |-  ( ( ( y / 2 ) e. RR+ /\ x e. ~H ) -> ( normh ` ( T ` ( ( y / 2 ) .h x ) ) ) = ( normh ` ( ( y / 2 ) .h ( T ` x ) ) ) ) | 
						
							| 35 |  | norm-iii |  |-  ( ( ( y / 2 ) e. CC /\ ( T ` x ) e. ~H ) -> ( normh ` ( ( y / 2 ) .h ( T ` x ) ) ) = ( ( abs ` ( y / 2 ) ) x. ( normh ` ( T ` x ) ) ) ) | 
						
							| 36 | 31 25 35 | syl2an |  |-  ( ( ( y / 2 ) e. RR+ /\ x e. ~H ) -> ( normh ` ( ( y / 2 ) .h ( T ` x ) ) ) = ( ( abs ` ( y / 2 ) ) x. ( normh ` ( T ` x ) ) ) ) | 
						
							| 37 |  | rpre |  |-  ( ( y / 2 ) e. RR+ -> ( y / 2 ) e. RR ) | 
						
							| 38 |  | rpge0 |  |-  ( ( y / 2 ) e. RR+ -> 0 <_ ( y / 2 ) ) | 
						
							| 39 | 37 38 | absidd |  |-  ( ( y / 2 ) e. RR+ -> ( abs ` ( y / 2 ) ) = ( y / 2 ) ) | 
						
							| 40 | 39 | adantr |  |-  ( ( ( y / 2 ) e. RR+ /\ x e. ~H ) -> ( abs ` ( y / 2 ) ) = ( y / 2 ) ) | 
						
							| 41 | 40 | oveq1d |  |-  ( ( ( y / 2 ) e. RR+ /\ x e. ~H ) -> ( ( abs ` ( y / 2 ) ) x. ( normh ` ( T ` x ) ) ) = ( ( y / 2 ) x. ( normh ` ( T ` x ) ) ) ) | 
						
							| 42 | 34 36 41 | 3eqtrrd |  |-  ( ( ( y / 2 ) e. RR+ /\ x e. ~H ) -> ( ( y / 2 ) x. ( normh ` ( T ` x ) ) ) = ( normh ` ( T ` ( ( y / 2 ) .h x ) ) ) ) | 
						
							| 43 | 22 24 27 30 42 | nmcexi |  |-  ( normop ` T ) e. RR |