| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elin |
|- ( T e. ( LinOp i^i ContOp ) <-> ( T e. LinOp /\ T e. ContOp ) ) |
| 2 |
|
fveq1 |
|- ( T = if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) -> ( T ` A ) = ( if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) ` A ) ) |
| 3 |
2
|
fveq2d |
|- ( T = if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) -> ( normh ` ( T ` A ) ) = ( normh ` ( if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) ` A ) ) ) |
| 4 |
|
fveq2 |
|- ( T = if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) -> ( normop ` T ) = ( normop ` if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) ) ) |
| 5 |
4
|
oveq1d |
|- ( T = if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) -> ( ( normop ` T ) x. ( normh ` A ) ) = ( ( normop ` if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) ) x. ( normh ` A ) ) ) |
| 6 |
3 5
|
breq12d |
|- ( T = if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) -> ( ( normh ` ( T ` A ) ) <_ ( ( normop ` T ) x. ( normh ` A ) ) <-> ( normh ` ( if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) ` A ) ) <_ ( ( normop ` if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) ) x. ( normh ` A ) ) ) ) |
| 7 |
6
|
imbi2d |
|- ( T = if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) -> ( ( A e. ~H -> ( normh ` ( T ` A ) ) <_ ( ( normop ` T ) x. ( normh ` A ) ) ) <-> ( A e. ~H -> ( normh ` ( if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) ` A ) ) <_ ( ( normop ` if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) ) x. ( normh ` A ) ) ) ) ) |
| 8 |
|
idlnop |
|- ( _I |` ~H ) e. LinOp |
| 9 |
|
idcnop |
|- ( _I |` ~H ) e. ContOp |
| 10 |
|
elin |
|- ( ( _I |` ~H ) e. ( LinOp i^i ContOp ) <-> ( ( _I |` ~H ) e. LinOp /\ ( _I |` ~H ) e. ContOp ) ) |
| 11 |
8 9 10
|
mpbir2an |
|- ( _I |` ~H ) e. ( LinOp i^i ContOp ) |
| 12 |
11
|
elimel |
|- if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) e. ( LinOp i^i ContOp ) |
| 13 |
|
elin |
|- ( if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) e. ( LinOp i^i ContOp ) <-> ( if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) e. LinOp /\ if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) e. ContOp ) ) |
| 14 |
12 13
|
mpbi |
|- ( if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) e. LinOp /\ if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) e. ContOp ) |
| 15 |
14
|
simpli |
|- if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) e. LinOp |
| 16 |
14
|
simpri |
|- if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) e. ContOp |
| 17 |
15 16
|
nmcoplbi |
|- ( A e. ~H -> ( normh ` ( if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) ` A ) ) <_ ( ( normop ` if ( T e. ( LinOp i^i ContOp ) , T , ( _I |` ~H ) ) ) x. ( normh ` A ) ) ) |
| 18 |
7 17
|
dedth |
|- ( T e. ( LinOp i^i ContOp ) -> ( A e. ~H -> ( normh ` ( T ` A ) ) <_ ( ( normop ` T ) x. ( normh ` A ) ) ) ) |
| 19 |
18
|
imp |
|- ( ( T e. ( LinOp i^i ContOp ) /\ A e. ~H ) -> ( normh ` ( T ` A ) ) <_ ( ( normop ` T ) x. ( normh ` A ) ) ) |
| 20 |
1 19
|
sylanbr |
|- ( ( ( T e. LinOp /\ T e. ContOp ) /\ A e. ~H ) -> ( normh ` ( T ` A ) ) <_ ( ( normop ` T ) x. ( normh ` A ) ) ) |
| 21 |
20
|
3impa |
|- ( ( T e. LinOp /\ T e. ContOp /\ A e. ~H ) -> ( normh ` ( T ` A ) ) <_ ( ( normop ` T ) x. ( normh ` A ) ) ) |